Abstract:
A protective agent for an image bearing member of an image forming apparatus. The protective agent is applied onto a surface of the image bearing member and includes a hydrophobic organic compound (A), an inorganic fine particle (B), and an inorganic lubricant (C).
Abstract:
A method for producing and commissioning a transmission with a water-based lubricant comprises the following steps. A mixture of a vaporizable liquid, a comminuted solid lubricant and a preserving agent (22) are applied (21) to the finished rotary parts (20) and then dried (23), whereby a coating forms on them. The rotary parts with the coating are installed in the transmission housing and the assembled transmission is filled with a cooling liquid (25), which is primarily essentially water. The transmission is put into operation for the first time (27), wherein the lubricant for the further operation is only formed by abrasion of the rotary parts and distribution of the abraded matter in the cooling liquid. The transmission is then ready for operation (28). Furthermore, a lubricant produced by this method is described.
Abstract:
The present invention is directed to enhanced compositions that facilitate the pulling of cables through conduits. In one embodiment, the composition comprises a sufficient amount of boron nitride, which, upon application onto the cable surface, allows the cable to be pulled faster and/or with less force through the conduit than without the boron nitride present. The invention further relates to a method for pulling cables through conduits by applying an effective amount of boron nitride composition onto the cable surface. Lastly, the invention relates to an apparatus for distributing a cable-pulling composition comprising a block of boron nitride onto a cable as it is being pulled through a conduit.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail track and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about twenty-five percent to about seventy percent by volume of a polymeric carrier, about five to seventy-five percent by volume of organic and inorganic extreme pressure additives, about zero to twenty percent by volume synthetic extreme pressure anti-wear liquid oil, and about zero to one percent by volume optical brightener.
Abstract:
A coating composition is described, containing (a) a metallic matrix based on nickel, cobalt, iron; or combinations thereof; (b) a ceramic phase, containing at least one metal boride or metal silicide compound; and (c) a lubricant phase. Methods of providing wear-resistance and low-friction characteristics to an article (e.g., a gas turbine) are also described, using the coating composition. Related structures are also discussed.
Abstract:
The present invention is directed to an apparatus for distributing a cable-pulling composition onto a cable as it is being pulled through a conduit. In one embodiment, the cable pulling composition is a block of an enhanced composition, e.g., consisting essentially of boron nitride that facilitates the pulling of cables through conduits. The invention further relates to a method for pulling cables through conduits by applying an effective amount of boron nitride composition onto the cable surface through the use of the cable-pulling apparatus of the invention.
Abstract:
A process for manufacturing a lubricant composition comprises combining a superabsorbent polymer with a material for decreasing friction between surfaces that frictionally engage one another, by polymerizing monomers of the superabsorbent polymer with the material for decreasing friction, or polymerizing the monomers for forming the superabsorbent polymer with the material for decreasing friction and a binder, where the binder is selected from thermoplastic resins or curable resins. The superabsorbent polymer may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. The material for decreasing friction comprises a petroleum lubricant, synthetic lubricant, grease, solid lubricant or metal working lubricant optionally containing a lubricant additive, or mixtures thereof. The process encompasses conducting the polymerization and coating the lubricant composition on a surface such as a wire or cable. The various processes also yield products produced by the process.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
The present invention provides a new composite material comprising a porous matrix made of metal, metal alloy or semiconducting material and hollow fullerene-like nanoparticles of a metal chalcogenide compound or mixture of such compounds. The composite material is characterized by having a porosity between about 10% and about 40%. The amount of the hallow nanoparticles in the composite material is 1-20 wt. %.
Abstract:
Dry film lubricant coatings are provided by using a silicone resin binder, either as an aqueous emulsion or in a solvent-based system, to fix an alkaline earth metal fluoride to a substrate. The compositions used to apply the coatings may also include relatively minor amounts of xylene, ammonium benzoate, a wetting agent, and/or a porosity-inducing agent—although none of those additives remains in the cured coating. Multi-layer dry film lubricant coatings are also disclosed, with the multi-layer coating having a basecoat layer as described above, and a topcoat layer made of a layer-lattice solid such as graphite or molybdenum disulfide, and a silicone resin, aluminum phosphate or an alkali metal silicate binder.