Abstract:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding an DUF642 (Protein containing a Domain of Unknown Function) polypeptide, or an epimerase-related like polypeptide, or a Phospholipase/carboxylesterase (PLPCase) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a DUF642 polypeptide, or an epimerase-related like polypeptide, or a PLPCase polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides hitherto unknown POI-encoding nucleic acids DUF642-encoding nucleic acids, or epimerase-related like polypeptides, or PLPCase-encoding nucleic acids, and constructs comprising the same, useful in performing the methods of the invention.
Abstract:
The present invention is in the field of plant molecular biology and provides methods for production of high expressing constitutive promoters and the production of plants with enhanced constitutive expression of nucleic acids wherein nucleic acid expression enhancing nucleic acids (NEENAs) are functionally linked to the promoters and/or introduced into plants.
Abstract:
The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacosporaceae in transgenic plants and/or plant cells. In these plants, the ethylene signaling pathway and/or activity of the ethylene signaling compounds is changed. This is achieved by priming the ethylene signaling pathway in these plants in comparison to wild type plants and/or wild type plant cells. Depending on the activating or inhibitory function of a particular signaling compound overexpression or knock-down of the cognate gene might be used.
Abstract:
The present invention relates generally to the field of molecular biology and concerns increasing the tocopherol content of a plant relative to a control plant, comprising expressing in a plant at least one polynucleotide encoding a delta-12-desaturase, at least one polynucleotide encoding a delta-6-desaturase, at least one polynucleotide encoding a delta-6-elongase, and at least one polynucleotide encoding a delta-5-desaturase. The present invention also relates to methods for the manufacture of oil, fatty acid- or lipids-containing compositions, and to such oils and lipids as such.
Abstract:
The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacosporaceae in plants and/or plant cells. This is achieved by increasing the expression of an ACD protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an ACD protein.
Abstract:
The present invention is in the field of plant molecular biology and provides methods for production of high expressing seed-specific and/or seed-preferential promoters and the production of plants with enhanced seed-specific and/or seed-preferential expression of nucleic acids wherein nucleic acid expression enhancing nucleic acids (NEENAs) are functionally linked to the promoters and/or introduced into plants.
Abstract:
The present invention relates to a method of increasing resistance against fungal pathogens of the order Pucciniales, preferably the family Phacopsoraceae, in plants and/or plant cells. This is achieved by increasing the expression of a CASAR protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the order Pucciniales, preferably the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding a CASAR protein.
Abstract:
A method for enhancing various economically important yield-related traits in plants is provided. More specifically, a method for enhancing one or more yield-related traits in plants is provided, by modulating expression in a plant of a nucleic acid encoding a POI (protein of interest) polypeptide. Also provided are plants having modulated expression of a nucleic acid encoding a POI polypeptide, which plants have one or more enhanced yield-related traits compared with control plants. Constructs useful in performing the methods of the invention are further provided.
Abstract:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding an SGT1 polypeptide, or a CLC-pKG polypeptide, or a HD-hydrolase-like polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding an SGT1 polypeptide, or a CLC-pKG polypeptide, or a HD-hydrolase-like polypeptide, which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.
Abstract:
The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacopsoraceae in plants and/or plant cells. This is achieved by increasing the expression of an EIN2 protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an EIN2 protein.