Abstract:
Disclosed is a foldable tracking table assembly comprising a primary leaf, and a secondary leaf rotatably secured to the primary leaf and a table bracket secured to the opposite end of the primary leaf The table bracket in turn is secured to an adapter plate which is atop one or more pillow blocks. The pillow blocks are disposed atop linear rails upon which the pillow blocks are capable of longitudinally traversing. Adjacent the linear rail is a serrated track parallel to the at least one rail and a serrated pawl capable of locking engagement with the serrated track. A solenoid facilitates the locking engagement of the pawl with the serrated track wherein a user of the table assembly manually activates the solenoid withdrawing the serrated pawl from locking engagement with the serrated track thereby allowing the table assembly to traverse the linear rail to a position that accommodates the user.
Abstract:
The invention described herein provides a flight crew with an easier and more intuitive way to control and monitor flight-control surfaces. Specifically, the invention displays all flight-control surfaces on a touch-screen display device located in an aircraft cockpit. The invention includes graphical and numerical position indicators to continuously display actual position information for flight-control surfaces. Additionally, the invention allows a flight crew to make flight-control surface adjustments through the touch-screen device. The invention further includes an engine performance indicator and a mode controller configured to display autopilot modes and to receive autopilot mode selections. A method is presented for controlling an aircraft flight-control surface via a touch screen device. The method includes receiving an indication of a flight-control surface and enabling selection of a position change. Based on the position change selection, the method includes verifying a corresponding movement and displaying an actual position of the flight-control surface.
Abstract:
Embodiments of the present disclosure include a robotic method for processing an aircraft component that includes determining feature positions by illuminating with light, imaging the reflected light with a camera, and processing images from the camera. The method further includes determining a position offset of the features by comparing to a model of the aircraft component, determining a path offset for movement by a robot arm, and modifying the aircraft component using a processing tool coupled to the robot arm. A robotic system for processing an aircraft component includes a light emitting device and a camera configured for respectively illuminating and imaging features of an aircraft component, a gripper tool for gripping and moving the aircraft component to a workstation, a processing tool for modifying the aircraft component, and a controller to control the light emitting device, camera, gripper tool, workstation, and processing tool to modify the aircraft component.
Abstract:
A system for an aircraft includes a compressor for a vapor cycle cooling system (VCCS) for providing cabin air conditioning; an APU for mechanically driving the VCCS compressor; and a starter-generator-motor (SGM) apparatus operable in any of a starter mode, a generator mode, or a motor mode. The SGM apparatus includes: (i) a first coupling element for coupling the SGM apparatus to the APU such that, in the starter mode, the SGM apparatus is used in driving and starting the APU, (ii) a second coupling element for coupling the SGM apparatus to the VCCS compressor such that, in the motor mode, the SGM apparatus mechanically drives the VCCS compressor, and (iii) a set of electrical power terminals at which, in the generator mode, the SGM apparatus provides electrical output power for powering the aircraft electrical system (including the VCCS condenser fan and VCCS evaporator fans) and, in the starter mode and motor mode, the SGM apparatus receives electrical input power from an external electrical power source.
Abstract:
The invention described herein provides a flight crew with an easier and more intuitive way to control and monitor flight-control surfaces. Specifically, the invention displays all flight-control surfaces on a touch-screen display device located in an aircraft cockpit. The invention includes graphical and numerical position indicators to continuously display actual position information for flight-control surfaces. Additionally, the invention allows a flight crew to make flight-control surface adjustments through the touch-screen device. The invention further includes an engine performance indicator and a mode controller configured to display autopilot modes and to receive autopilot mode selections. A method is presented for controlling an aircraft flight-control surface via a touch screen device. The method includes receiving an indication of a flight-control surface and enabling selection of a position change. Based on the position change selection, the method includes verifying a corresponding movement and displaying an actual position of the flight-control surface.
Abstract:
Disclosed is a foldable tracking table assembly comprising a primary leaf, and a secondary leaf rotatably secured to the primary leaf and a table bracket secured to the opposite end of the primary leaf The table bracket in turn is secured to an adapter plate which is atop one or more pillow blocks. The pillow blocks are disposed atop linear rails upon which the pillow blocks are capable of longitudinally traversing. Adjacent the linear rail is a serrated track parallel to the at least one rail and a serrated pawl capable of locking engagement with the serrated track. A solenoid facilitates the locking engagement of the pawl with the serrated track wherein a user of the table assembly manually activates the solenoid withdrawing the serrated pawl from locking engagement with the serrated track thereby allowing the table assembly to traverse the linear rail to a position that accommodates the user.
Abstract:
A seat base for use in aircraft has a first cross member, a second cross member, a first leg, a second leg, and a base plate having a first bendable tab and a second bendable tab facing away from the first tab. The first cross member, the second cross member, and the base plate are each configured to be secured to the first and second legs in an extended position and a retracted position. The first and second legs are configured to be secured to seat feet and floor tracking rails. The first and second cross members are secured to the base plate so as to allow for selective rotation of the first and second cross members in response to relative vertical movement of the first leg with respect to the second leg.
Abstract:
A system and method for removing condensate from an air conditioning unit is disclosed. The system comprises a conduit including an outlet portion that is connected to a chamber of a housing of the unit at a first location. The conduit includes an inlet portion that is connected to the chamber at a second location where condensate accumulates. A gravitational separator portion which extends below the second location is connected to the outlet portion and the inlet portion. A draining portion having an orifice for allowing condensate to exit the conduit is connected to the gravitational separator portion below the second location. The first location is chosen such that during operation of the unit the pressure at the first location is less than the pressure at the second location.
Abstract:
An articulating armrest includes a first protrusion and a second protrusion that protrude from a member a predetermined spacing apart. Each protrusion aligns within a separate track within a housing configured for stowing the armrest within a seat back. The two tracks include straight and curved portions configured to articulate the armrest. Specifically, the armrest moves along a curvilinear path between stowed and deployed positions by translating along the tracks and pivoting about the second protrusion. The armrest may stow in a seat back and beneath the seat bottom to provide a full length armrest when deployed, and the armrest may stow flush with the seat back for sitting against. Mechanical tension may be provided to automatically deploy the armrest, and a rotational damper and a gas spring may be used to control the speed at which the armrest deploys.