Abstract:
An electrolytic assembly for the bacterial disinfection of water is disclosed. For example, water circulating in cooling towers such as those that discharge heat from air conditioning can be treated, or wastewater with a dryness varying from 0.01 to 3 %. The assembly comprises electrolytic unit(s) comprising at least one Dimensionnally Stable Anode commonly known as DSA. A method for the bacterial disinfection of water, such as water circulating within a cooling tower is also disclosed. The method comprising the steps of a) injecting water into an electrolytic unit comprising at least one DSA, the water having circulated in a cooling tower prior to be injected into the electrolytic unit; b) performing an electrolytic treatment of the water circulating into the electrolytic unit for at least partially kill bacteria present in the water; and c) optionally, re-injecting the water once treated into the cooling tower. The treatment is particularly adapted for eliminating Legionella and/or E. coli.
Abstract:
A method, a system and a kit for removing colloid contaminants from a fluid by destabilization thereof with addition of kinetic energy thereto is provided, the method to overcome the energetic barrier preventing an efficient fluid-solid separation comprises injecting the colloidal fluid containing contaminants in an electrolytic system including an electrocoagulation module comprising an anode and a cathode, the anode and the cathode being adapted to be electrically connected to perform electrolysis of the fluid, providing an electric current, between the anode and the cathode, to form electro-coagulated contaminants flocs in the agitated fluid, separating the electro-coagulated flocs from the fluid, and extracting the fluid from the electrolytic system.
Abstract:
An electrolytic reactor for the electrolytic treatment of a fluid is disclosed. The reactor comprises an electrolytic chamber, an electrode cartridge comprising an electrode assembly longitudinally extending from a crown section configured to operatively seal the electrolytic chamber when the electrode assembly is inserted in the electrolytic chamber; an inlet extending perpendicularly to a vertical longitudinal axis defined by the electrolytic chamber; and an outlet extending through the crown section along the vertical longitudinal axis defined by the electrolytic chamber, the outlet being configured to be in fluid communication with the electrolytic chamber when the electrolytic chamber is sealed by the crown section. Advantageously, by having the outlet extending upwardly above the electrodes, any dead zone typically found on electrodes at the level of the outlet are eliminated, increasing as such the useful surface area of the electrodes spanning the entire length of the electrolytic chamber.
Abstract:
A novel magnesium-based alloy is described. The alloy is particularly suitable for the construction of electrodes, especially anodes, that can be used for an electrochemical process, such as the synthesis of struvite. The magnesium-based alloy is an AZXY alloy in which A is aluminium and Z is zinc, X represents the content, expressed in wt. %, of the first element, and Y the content, expressed in wt. %, of the second element. The AZXY alloy according to the invention has 2%≤X≤4% and 0.5%≤Y≤2%, and an iron (Fe) content of less than 0.005%, and preferably less than 0.003%. The anodes constituted by this novel alloy have a much slower corrosion speed and improved performances compared to existing anodes. An electrode cartridge comprising said alloy and suitable for being inserted into an electrolytic reactor so as to form, once assembled, an electrocoagulation unit, is also described.
Abstract:
An electrolytic reactor for the electrolytic treatment of a fluid is disclosed. The reactor comprises an electrolytic chamber, an electrode cartridge comprising an electrode assembly longitudinally extending from a crown section configured to operatively seal the electrolytic chamber when the electrode assembly is inserted in the electrolytic chamber; an inlet extending perpendicularly to a vertical longitudinal axis defined by the electrolytic chamber; and an outlet extending through the crown section along the vertical longitudinal axis defined by the electrolytic chamber, the outlet being configured to be in fluid communication with the electrolytic chamber when the electrolytic chamber is sealed by the crown section. Advantageouslly, by having the outlet extending upwardly above the electrodes, any dead zone typically found on electrodes at the level of the outlet are eliminated, increaing as such the useful surface area of the electrodes spanning the entire length of the electrolytic chamber.
Abstract:
An electrolytic reactor and process for decontaminating wastewater containing emerging contaminants, such as medicament residues or per- and polyfluoroalkyl substances (PFAS) are disclosed. The contaminated wastewater is circulated through one or several reactors for electro-oxidizing and degrading the contaminants. Each reactor comprises an enclosure, an electrode assembly comprising first and second current distribution circuits, a first group of N electrodes connected to the first current distribution circuit, and a second group of N electrodes connected to the second current distribution circuit. According to the polarity of the current provided to the electrodes, the electrodes of the first group form anodes whereas the electrodes of the second group forms cathodes, and vice versa. The electrodes are preferably dimensionally stable anodes (DSA). The reactor and process described herein allow removal of multiple emerging contaminants simultaneously, in addition to reducing the carbon footprint through lower power consumption.
Abstract:
An electrolytic reactor for the electrolytic treatment of a fluid is disclosed. The reactor comprises an electrolytic chamber, an electrode cartridge comprising an electrode assembly longitudinally extending from a crown section configured to operatively seal the electrolytic chamber when the electrode assembly is inserted in the electrolytic chamber; an inlet extending perpendicularly to a vertical longitudinal axis defined by the electrolytic chamber; and an outlet extending through the crown section along the vertical longitudinal axis defined by the electrolytic chamber, the outlet being configured to be in fluid communication with the electrolytic chamber when the electrolytic chamber is sealed by the crown section. Advantageouslly, by having the outlet extending upwardly above the electrodes, any dead zone typically found on electrodes at the level of the outlet are eliminated, increaing as such the useful surface area of the electrodes spanning the entire length of the electrolytic chamber.
Abstract:
Un nouvel alliage à base de magnésium est décrit. L'alliage est particulièrement adapté pour la conception d'électrodes, notamment d'anodes, utiles en procédé électrochimique tel que pour la synthèse de la struvite. L'alliage à base de magnésium est du type AZXY avec A pour aluminium et Z pour zinc, X représente la teneur % en poids du premier élément et Y la teneur en % du second élément. L'alliage AZXY selon l'invention a 2% ≤ X ≤ 4% et 0,5% ≤ Y ≤ 2%, et une teneur en fer (Fe) inférieure à 0,005%, préférentiellement inférieure à 0,003%. Les anodes constituées de ce nouvel alliage ont une vitesse de corrosion beaucoup plus lente et des rendements améliorés par rapport aux anodes existantes. Une cartouche d'électrodes comprenant ledit alliage et adaptée pour s'insérer dans un réacteur électrolytique afin de former, une fois assemblés, une unité d'électrocoagulation est également décrite.
Abstract:
An apparatus and method for separating, harvesting and primary dewatering microalgae biomass from a microalgae solution by destabilization thereof with addition of kinetic energy thereto is disclosed. The method to overcome the energetic barrier preventing a fluid-solid separation comprises injecting the microalgae solution in an electrolytic system comprising an electrocoagulation reactor generally comprising an anode module and a cathode module, the anodes and the cathode(s) being adapted to be electrically connected to perform electrolysis, thus separating, harvesting and primary dewatering microalgae biomass. Such process is generally achieved by providing a DC electric current, between the anodes and the cathode(s), to perform the separation of the biomass in the solution, in preparation the following process steps of for liquid/solid separation and primary dewatering.
Abstract:
An electrolytic reactor for the electrolytic treatment of a fluid is disclosed. The reactor comprises an electrolytic chamber, an electrode cartridge comprising an electrode assembly longitudinally extending from a crown section configured to operatively seal the electrolytic chamber when the electrode assembly is inserted in the electrolytic chamber; an inlet extending perpendicularly to a vertical longitudinal axis defined by the electrolytic chamber; and an outlet extending through the crown section along the vertical longitudinal axis defined by the electrolytic chamber, the outlet being configured to be in fluid communication with the electrolytic chamber when the electrolytic chamber is sealed by the crown section. Advantageouslly, by having the outlet extending upwardly above the electrodes, any dead zone typically found on electrodes at the level of the outlet are eliminated, increaing as such the useful surface area of the electrodes spanning the entire length of the electrolytic chamber.