Abstract:
The invention relates to the use of one or more growth factors in a drug delivery system, optionally with an external mesh housing, to recruit and optionally harvest progenitor cells. These cells include those that normally reside in the bone marrow.
Abstract:
An effective method for prolonging localization of therapeutics within the rat gastrointestinal tract of at least about 12 hours is provided. The method includes localization of therapeutic agents that are nanoparticulated or nanoencapsulated. Attractive forces between an orally administered magnetic dose and an external magnet were monitored and internal dose motion in real time using biplanar videofluoroscopy was visualized. Tissue elasticity was quantified as a measure of tissue health by combining data streams. The methods address safety, efficacy, and monitoring capacity of magnetically localized doses and show a platform for testing the benefits of localized drug delivery.
Abstract:
An effective method for prolonging localization of therapeutics within the rat gastrointestinal tract of at least about 12 hours is provided. Attractive forces between an orally administered magnetic dose and an external magnet were monitored and internal dose motion in real time using biplanar videofluoroscopy was visualized. Tissue elasticity was quantified as a measure of tissue health by combining data streams. The methods address safety, efficacy, and monitoring capacity of magnetically localized doses and show a platform for testing the benefits of localized drug delivery.
Abstract:
The invention provides tissue marking pigment or dye particle retained within a tissue cell, the cellular cytoplasm, or one or more intracellular organelles. Also, the invention provides nanoparticles, which are phagocytosed, engulfed or otherwise entrapped by cells.
Abstract:
The invention is a cell aggregation device comprising a hydrogel substrate having at least one, preferably a plurality, of cell-repellant compartments recessed into the uppermost surface. Each compartment is composed of an upper cell suspension seeding chamber having an open uppermost portion and a bottom portion, and one, or more than one, lower cell aggregation recess connected to the bottom portion of the upper cell suspension seeding chamber by a port. The diameter of the port may be fully contiguous with the walls of the chambers and walls of the recesses, or the diameter of the port may be more narrow than the walls of the chamber but fully contiguous with the walls of the recesses or more narrow than both the walls of the chamber and the walls of the recesses. The upper cell suspension seeding chambers are formed and positioned to funnel the cells into the lower cell aggregation recesses through gravitational force. The aggregation recesses are formed and positioned to promote cellular aggregation by coalescing cells into a finite region of minimum gravitational energy, increasing intercellular contact and minimizing or preventing cell adherence to the substrate. A device for encapsulating aggregates of live cells is provided. The device comprises (i) a biocompatible, bio-sustainable substrate having a cell-encapsulating face composed of one or more biocompatible, bio-sustainable, spaced-apart, cell-encapsulating compartments extending therefrom and (ii) a coating layer composed of a biocompatible, bio-sustainable polymer that completely surrounds the substrate and the cell-encapsulating compartments. A method for making the device is also provided.
Abstract:
A composite formulation has been developed for selective, high efficacy delivery to specific regions of the mouth and gastrointestinal tract. The formulation is typically in the form of a tablet or capsule, which may include microparticles or beads. The formulation uses bioadhesive and controlled release elements to direct release to specific regions, where the drug is absorbed in enhanced amounts relative to the formulation in the absence of the bioadhesive and/or controlled release elements. This is demonstrated by an example showing delivery of gabapentin with a greater area under the curve (“AUC”) relative to the FDA reference immediate release drug, i.e., the AUC of the composite bioadhesive formulation is greater than 100% of the AUC of the immediate release drug. In the preferred embodiments, the formulation includes drug to be delivered, controlled release elements, and one or more bioadhesive elements. The bioadhesive polymer may be either dispersed in the matrix of the tablet or applied as a direct compressed coating to the solid oral dosage form. The controlled release elements are selected to determine the site of release. The bioadhesive components are selected to provide retention of the formulation at the desired site of uptake and administration. By selecting for both release and retention at a specific site, typically based on time of transit through the gastrointestinal tract, one obtains enhanced efficacy of uptake of the drug. This is particularly useful for drugs with narrow windows of absorption, and drugs with poor solubility such as the BCE class III and class IV drugs.
Abstract:
Methods for inducing a thermoplastic polymer, which can be non-mesogenic, to exhibit liquid crystalline properties have been developed. The method includes the steps of (a) heating the polymer from an initial temperature below its glass transition temperature (Tg) to a temperature greater than its Tg and below its melting temperature (Tm); (b) exposing the polymer to a pressure greater than about 2 metric tons/in2, preferably between about 2 and 10 metric tons/in2, preferably for at least about one minute, while maintaining the temperature greater than its Tg; and (c) cooling the polymer below the Tg while maintaining the elevated pressure. Unlike many prior art transition processes which are reversible, this process provides a liquid crystal state that can be maintained for years at ambient conditions. In a preferred embodiment, the plastics are bioerodible thermoplastic polymers, such as polyanhydrides, some polyesters, polyamides, and polyaromatics. The liquid crystalline polymers can be used in the controlled release or retention of substances encapsulated in the polymers. The polymer can be in a variety of forms including films, film laminants, and microparticles. In a preferred embodiment, the LC polymers are used to encapsulate therapeutic, diagnostic, or prophylactic agents for use in medical or pharmaceutical applications.
Abstract translation:已经开发了用于诱导可以是非介晶的热塑性聚合物以显示液晶性质的方法。 该方法包括以下步骤:(a)将聚合物从低于其玻璃化转变温度(Tg)的初始温度加热至大于其Tg并低于其熔融温度(Tm)的温度; (b)将聚合物暴露于大于约2公吨/ in 2的压力下,优选在约2至10公吨/ in 2之间,优选至少约1分钟,同时保持温度高于其 Tg; 和(c)在保持升高的压力的同时将聚合物冷却至Tg以下。 与可逆的许多现有技术的过渡过程不同,该方法提供可在环境条件下保持多年的液晶状态。 在优选的实施方案中,塑料是可生物腐蚀的热塑性聚合物,例如聚酐,一些聚酯,聚酰胺和多芳族化合物。 液晶聚合物可用于控制或保留包封在聚合物中的物质。 聚合物可以是各种形式,包括膜,膜层压剂和微粒。 在优选的实施方案中,LC聚合物用于包封用于医疗或药物应用的治疗剂,诊断剂或预防剂。
Abstract:
The invention involves methods and products for oral gene therapy. Genes under the control of promoters are protectively contained in microparticles and delivered to cells in operative form, thereby obtaining noninvasive gene delivery for gene therapy.
Abstract:
The invention involves methods and products for oral gene therapy. Genes under the control of promoters are protectively contained in microparticles and delivered to cells in operative form, thereby obtaining noninvasive gene delivery for gene therapy.
Abstract:
Bioadhesive polymers in the form of, or as a coating on, microcapsules containing drugs or bioactive substances which may serve for therapeutic, diagnostic, or diagnostic purposes in diseases of the gastrointestinal tract, are described. The polymeric microspheres all have a bioadhesive force of at least 11 mN/cm2 (110 N/CM2). Techniques for the fabrication of bioadhesive microspheres, as well as a method for measuring bioadhesive forces between microspheres and selected segments of the gastrointestinal tract in vitro are also described. This quantitative method provides a means to establish a correlation between the chemical nature, the surface morphology and the dimensions of drug-loaded microspheres on one hand and bioadhesive forces on the other, allowing the screening of the most promising materials from a relatively large group of natural and synthetic polymers which, from theoretical consideration, should be used for making bioadhesive microspheres.
Abstract translation:描述了可能在胃肠道疾病中用于治疗,诊断或诊断目的的药物或生物活性物质的形式或作为包衣形式的生物粘附聚合物。 聚合物微球全部具有至少11mN / cm 2(110N / CM 2)的生物粘附力。 还描述了用于制造生物粘附微球的技术,以及用于测量体外微球和胃肠道的选定区段之间的生物粘附力的方法。 这种定量方法提供了一种手段来建立化学性质,表面形态和药物负载微球的尺寸与生物粘附力之间的相关性,另一方面可以从相对较大的组中筛选出最有希望的材料 天然和合成的聚合物,从理论上考虑,应用于制造生物粘附微球。