Abstract:
Systems and methods here may be used for a setup of fluorescence image capturing of a gemstone, such as a diamond placed on a flat stage. Some examples utilize a setup that both sends light and captures the image from the table side of the gemstone by passing ultraviolet (UV) light between 10 nm and 400 nm to the gemstone and capturing the excited fluorescence image for analysis through a dichroic beam splitter. In some examples, the cutoff is 300 nm. The dichroic beam splitter arrangement allows for the camera to focus on the same interface of the stage and gemstone over and over for ease of use and without moving, changing, or adjusting the equipment for different samples.
Abstract:
Systems and methods here may be configured for cooling and examining materials. In some example embodiments, the system may include a main thermoconductive body with indentations on the top surface, a bottom surface having legs structures along the edge, wherein the bottom surface and the plurality of leg structures form a partially enclosed bottom chamber, and a center channel connecting the top surface and the bottom chamber.
Abstract:
Methods and systems described here include laser inscribing a gemstone, a computer in communication with a first light source and a second light source, and a laser generator to create an inscription on the gemstone, wherein the first light source is configured to be directed at the gemstone in the holder from a side view, wherein the second light source is configured to be directed at the gemstone in the holder from a girdle top-view, wherein the computer is configured to utilize the captured side image to map a side view girdle profile of the gemstone and calculate a relative motor movement to align each spot along the inscription with a laser focal plane.
Abstract:
Systems and methods here may be used for automated capturing and analyzing spectrometer data of multiple sample gemstones on a stage, including mapping digital camera image data of samples, applying a Raman Probe to a first sample gemstone under evaluation on the stage, receiving spectrometer data of the sample gemstone from the probe, automatically moving the stage to a second sample, using the image data, and analyzing the other samples.
Abstract:
Disclosed herein are devices and methods for screening gemstones (e.g., diamonds). In articular, the disclosed method and system can efficiently and accurately identify and distinguish genuine earth-mined gemstones (e.g., diamond) from synthetic and treated gemstones or gemstone simulants.
Abstract:
A gem microscope according to the invention includes a focus column, a stage, and a quick disconnect mechanism that facilitates removable coupling of the focus column of the stage. The focus column and the stage have compatible features that establish the proper mounting plane and lateral alignment of the focus column relative to the stage. In the example embodiment, the quick disconnect mechanism includes a threaded element on the focus column and a compatibly threaded thumbwheel that rotates within the stage to connect/disconnect the focus column to/from the stage.
Abstract:
Systems and methods here may be used for a analyzing images of gemstones to automatically assign a haziness and/or fluorescence grade to the gemstone using contrast analysis on pixelated, digital images of the gemstones.
Abstract:
Systems and methods here may be used for a setup of fluorescence image capturing of a gemstone, such as a diamond placed on a flat stage. Some examples utilize a setup that both sends light and captures the image from the table side of the gemstone by passing ultraviolet (UV) light between 10 nm and 400 nm to the gemstone and capturing the excited fluorescence image for analysis through a dichroic beam splitter. In some examples, the cutoff is 300 nm. The dichroic beam splitter arrangement allows for the camera to focus on the same interface of the stage and gemstone over and over for ease of use and without moving, changing, or adjusting the equipment for different samples.
Abstract:
Provided herein is an apparatus for assessing a color characteristic of a gemstone. The apparatus comprises an optically opaque platform for supporting a sample gemstone to be assessed, a daylight-approximating light source to provide uniform illumination to the gemstone, an image capturing component, and a telecentric lens positioned to provide an image of the illuminated gemstone to the image capturing component. Also provided are methods of color analysis based on images collected using such an apparatus.
Abstract:
A system for grading the cut of a diamond utilizes a number of appearance metrics to generate scores for a number of cut components that affect cut quality. These cut components include brightness, fire, scintillation, overweight, durability, polish, and symmetry. The cut grading system employs a cut grading algorithm that processes the individual scores obtained for the cut components to generate an overall cut grade for the diamond. The scoring methodology and the cut grading algorithm are designed to emulate actual observation grading such that the overall cut grade represents a fair indication of the cut quality of the diamond. In one practical embodiment, the cut grading system is fully automated and computer-implemented.