Abstract:
In a pump system, a process fluid is directed into inlet chambers of a pump casing at an inlet pressure, and a plurality of rotors disposed inside the pump casing are rotated to pump the process fluid from the inlet chambers to an outlet chamber located between the inlet chambers, wherein the process fluid in the outlet chambers is at an outlet pressure. The process fluid is directed from the outlet chamber to a separator configured to separate particulate matter from the process fluid, and a portion of separated process fluid is directed from the separator to a gear chamber of the pump. Pump bearings are lubricated with the portion of separated process fluid from the gear chamber. Some of the portion of the separated process fluid from the pump bearing is leaked to the inlet chambers via rotor shrouds to reduce accumulation of particulate matter in the inlet chambers.
Abstract:
A system includes a hydraulic energy transfer system configured to exchange pressures between a first fluid and a second fluid. The system also includes a motor system configured to power the hydraulic energy transfer system and a shaft coupling the motor system and the hydraulic energy transfer system. Additionally, the system includes a shaft seal disposed about the shaft. Further, the system includes a pressure compensator configured to reduce a pressure differential across the shaft seal.
Abstract:
A system includes an industrial system including a rotary isobaric pressure exchanger (IPX). The rotary IPX is configured to receive a first amount of a non-corrosive fluid at a first pressure and a second amount of a corrosive fluid at a second pressure. The first pressure is greater than the second pressure, and the first amount is different from the second amount. The rotary IPX is also configured to exchange pressures between the non-corrosive fluid and the corrosive fluid. Additionally, the rotary IPX is configured to output a first mixture of the corrosive fluid and the non-corrosive fluid at a third pressure and to output the non-corrosive fluid at a fourth pressure. The third pressure is greater than the fourth pressure.
Abstract:
A system including a frac system with a rotary isobaric pressure exchanger configured to exchange pressures between a first fluid and a second fluid, and a lubrication system configured to lubricate the rotary isobaric pressure exchanger.
Abstract:
A system including a frac system with a hydraulic energy transfer system configured to exchange pressures between a first fluid and a second fluid, and a flush system configured remove particulate out of the hydraulic energy transfer system.
Abstract:
A system including a frac system with a rotary isobaric pressure exchanger configured to exchange pressures between a first fluid and a second fluid, and a lubrication system configured to lubricate the rotary isobaric pressure exchanger.
Abstract:
Method for making and machine having a fixed part (48) including a portion with a smooth surface, a rotating part (32) configured to rotate relative to the fixed part, the rotating part (32) directly facing the portion of the fixed part (48); and plural ridges (72) formed on the portion of the fixed part (48) directly facing the rotating part (32), the plural ridges (72) being made of an abradable material that is configured to be inoperable at temperatures above 1000 °C.
Abstract:
A pump system includes inlet chambers, an outlet chamber, and rotors disposed inside the inlet chambers and the outlet chamber to pump a process fluid from the inlet chambers to the outlet chamber and to direct the process fluid to a separator. A gear chamber is configured to receive a portion of the process fluid from the separator. First and second sets of pump bearings are coupled to the rotors and lubricated by the portion of the process fluid flowing from the gear chamber. A conduit is configured to direct the portion of the process fluid from the pump bearings back to the gear chamber. Some of the portion of the process fluid lubricating the pump bearings is permitted to leak to the inlet chambers. Additional process fluid is continually added to the portion of the process fluid to compensate for fluid leaking to the inlet chambers.
Abstract:
An article having low wettability is presented. The article comprises a body portion and a surface portion disposed on the body portion. The surface portion comprises a plurality of features disposed on the body portion, and the features have a size, shape, and orientation selected such that the surface portion has a wettability sufficient to generate, with a reference liquid, a contact angle of at least about 100 degrees. The features comprise a height dimension (h) and a width dimension (a), and are disposed in a spaced-apart relationship characterized by a spacing dimension (b). The ratio of b/a and the ratio of h/a are such that the drop exhibits metastable non- Wenzel behavior.
Abstract:
An article having low wettability is presented. The article comprises a body portion and a surface portion disposed on the body portion. The surface portion comprises a plurality of features disposed on the body portion, and the features have a size, shape, and orientation selected such that the surface portion has a wettability sufficient to generate, with a reference liquid, a contact angle of at least about 100 degrees. The features comprise a height dimension (h) and a width dimension (a), and are disposed in a spaced-apart relationship characterized by a spacing dimension (b). The ratio of b/a and the ratio of h/a are such that the drop exhibits metastable non- Wenzel behavior.