Abstract:
A power management integrated circuit comprises a modular interleaved clock generator comprising a plurality of interconnected modular elements, each element constructed to generate and output a clock signal, and each one comprising: a phase port high input; a phase port low input; a clock input; and a bypass switch coupled between the phase port high input and the phase port low input, wherein in response to the bypass switch of at least one of the plurality of elements in a closed state, the phase port high inputs or the phase port low inputs of the remaining elements absent the at least one interleaving controller having the bypass switch in the closed state each receives a voltage that interleaves the clock signals output from the remaining active elements to have an interleaving arrangement that includes equal phase delays.
Abstract:
The present invention provides a mechanism whereby active servers are able to extend their RAM by using memory available in standby servers. This can be achieved, without having to take the servers out of their standby mode, by implementing a memory manager operating in at least one active server and configured to directly access the memory of the servers in standby mode, without requiring the processor of these servers in standby mode to be active. In these servers in standby mode, at least their memory, their network card and their communication means are active, whereas at least their processor is in standby mode.
Abstract:
Organic oligomers of acylglycerol having general formula (I): Formula (I), in which M1 and Q1 are organic groups; G11 is a hydroxylpropyl group; G12 and G13 are α/α′-acylglycerols; n is a natural integer from the range [0; 8]; m is a natural integer from the range [0; 4]; and p is a natural integer from the range [0; 3].
Abstract:
An electronic temperature sensor for measuring the junction temperature of an electronic power switch (4) of a static converter (8) includes an injection source of a calibrated measurement current (20) and a differential voltage measurement amplifier (76; 276). The electronic temperature sensor includes a first series connection (26) element and a second series connection (28) connected respectively to the inlet terminals (78, 80) of the differential voltage amplifier (76; 276). The first and second series connection elements (26, 28; 224, 226) are configured to protect the amplifier against a high voltage, have essentially identical electrical characteristics and are included in the set formed by resistances and high-voltage (HV) rapid diodes.
Abstract:
A method for equalizing a signal comprising modulated symbols comprising a block of N received symbols comprises: demultiplexing the N received symbols by factor L to generate a predetermined number L of sub-blocks of symbols, each comprising a version of the N received symbols sub-sampled by factor L, the independent equalization of each sub-block using an identical equalization algorithm, multiplexing the equalized symbols of each sub-block to obtain a block of N equalized symbols, removing instances of interference linked to paths other than two paths of higher power comprising generating an interference term resulting from the influence, on the equalized symbols, of all paths of the channel having the impulse response of the transmission channel except two paths of higher power, subtracting the interference term from the symbols of the block of N received symbols, and, a second equalization step equal to a second iteration of the first equalization step.
Abstract:
A method of treating a solid lignocellulosic material (10) in which the solid lignocellulosic material (10) is subjected to a treatment, called a mechano-chemical treatment (1), of mixing and chemical degradation of the solid lignocellulosic material (10) so as to form an intermediate composition having a hydrated lignocellulosic material whose enzymatic digestibility is increased relative to the digestibility of the solid lignocellulosic starting material (10), then; the hydrated lignocellulosic material is subjected to a treatment, called a mechano-chemical treatment (2), in which a dispersion is formed, called an aqueous dispersion, of the hydrated lignocellulosic material (10) in an aqueous composition, the aqueous dispersion including at least one enzyme for degrading the hydrated lignocellulosic material (10).
Abstract:
A method for forming a cathodic protection coating on a substrate forming a turbomachine part, includes deposition, on the substrate, of particles for cathodic protection of the substrate, this deposition being performed by electrophoresis from an organic electrolyte including the particles, and forming an inorganic matrix in pores of the deposit of particles produced in this way, including impregnating the deposit with an impregnation composition, drying heat treatment of the deposit impregnated by the impregnation composition, and densifying the deposit by mechanical compacting, after the drying heat treatment, in order to make the deposit electrically conductive.
Abstract:
A device including a first portion, a second portion, a first contact and a second contact, the first portion being made of a semiconductor having a first doping, the second portion being made of a semiconductor having a second doping different than the first, the first portion and the second portion forming a p/n junction including a depletion zone in the first portion, the contacts being configured so that when an electric voltage (V1) is applied between the contacts, a dimension of the depletion zone depends on a value of the electric voltage, an ionization energy being defined for dopants of the second portion. The device includes an emitter generating a radiation having an energy greater than the ionization energy and illuminating the second portion with the radiation.
Abstract:
The invention relates to a method for quantizing a deep neural network including several layers, previously trained during a training phase determining for each layer a set of weights. The method includes a phase of quantizing the deep neural network including determining a disruption limit value of at least one weight of the weight set of the layer, beyond which the output of the deep neural network is erroneous, determining, for a target inference precision of the neural network, and from the disruption limit value, an adjustment limit value of at least one weight of the set of weights, and decreasing an arithmetic precision of at least one weight of the set of weights as a function of the adjustment limit value. The invention also relates to a computer program, a device implementing such a method, and a deep neural network obtained by such a method.
Abstract:
A system (1) for generating a signal from a surface (22) having a speed V in a direction U, comprising: a light source (2) emitting a Gaussian light beam along a first optical path (11); a sensor (3) able to evaluate the effects of the electromagnetic interference of the first beam; a means (2′, 4) for generating a second Gaussian light beam along a second optical path (12); a second sensor (3′) able to evaluate the effects of electromagnetic interference of the second beam; a focusing lens (5, 6) located on the first and/or the second optical path (11, 12), focusing the light beam at a distance f and defining an upstream optical path (11′, 12′); and a means (4′, 7) for routing the second beam able to redirect the second path (12′) in the direction of the first path (11′).