Abstract:
A method for fabricating a liquid crystal display panel includes forming a UV sealant on either one of first and second substrates, forming a liquid crystal layer between the first and second substrates, attaching the first and second substrates, irradiating a UV ray on the attached substrates with masking regions where the UV sealant and at least one scribing line are crossed, and cutting the bonded substrates into a plurality of unit cells.
Abstract:
A method for fabricating a color filter of an LCD device includes: providing a clichnull having a plurality of grooves; filling Red, Green and Blue colored inks into the grooves of the clichnull; and repositioning the Red, Green and Blue colored inks onto a substrate of the LCD device.
Abstract:
A method of forming an alignment layer for a liquid crystal display device including: attaching a transfer film on a printing roll, the transfer film including a convex portion having first-sized halftone dots and second-sized halftone dots; positioning a substrate on a printing table; providing aligning solution on an anilox roll using a doctor roll; and transferring the aligning solution on the anilox roll to the transfer film while moving the printing table and rotating the printing roll, and then coating the aligning solution on the substrate to thereby form an alignment layer on the substrate.
Abstract:
An array substrate device for a liquid crystal display device includes a substrate, a gate line extending along a first direction on the substrate, a data line extending along a second direction substantially perpendicular to the first direction on the substrate, a pixel region defined by a crossing of the gate and data lines, a common line extending along the first direction and spaced apart from the gate line, a common electrode having a plurality of first portions extended along the second direction from the common line to the pixel region, wherein the extended portion of the common electrode adjacent to the data line includes first and second extensions overlapping portions of the data line, a thin film transistor on the substrate at a crossing portion of the gate and data lines, the thin film transistor including source and drain electrodes, a pixel electrode extended from the drain electrode to the pixel region, and an auxiliary electrode connected to the extended portion of the common electrode adjacent to the data line.
Abstract:
An in-plane switching mode liquid crystal display device includes a plurality of gate lines and data lines defining a plurality of pixel areas including at least first and second regions, a driving device for supplying a signal to adjacent pixel areas, a plurality of pixel electrodes within the first and second regions within the pixel area, the pixel electrodes being supplied a first data voltage from the driving device of the corresponding pixel to the first region and being supplied a second voltage from the driving device of an adjacent pixel within the second region, and a plurality of common electrodes within the first and second regions of the pixel areas for forming a horizontal electric field together with the pixel electrodes.
Abstract:
A method of fabricating a liquid crystal display device includes providing a clichnull having a plurality of grooves, each of the grooves having different depths and widths, filling resist material into the plurality of grooves, transferring the resist filled in the grooves onto a printing roll to form a plurality of resist portions along a circumference of the printing roll, and applying the resist portions onto a surface of an etching layer, wherein the applied resist portions form a resist pattern along the surface of the etching layer.
Abstract:
An apparatus and method of driving a liquid crystal display device are disclosed in the present invention. The liquid crystal display device includes a plurality of data lines in a first direction, a plurality of gate lines in a second direction to cross the data lines, a plurality of first liquid crystal cells on a first side with respect to the data lines, a plurality of second liquid crystal cells on a second side with respect to the data lines, a first switching part in each first liquid crystal cell and controlled by a current gate line and a next gate line, and a second switching part in each second liquid crystal cell and controlled by the current gate line and a previous gate line.
Abstract:
A liquid crystal display device and a driving method thereof are disclosed in the present invention. The liquid crystal display device includes a plurality of first data lines connected to a data integrated circuit, a plurality of second data lines connected to liquid crystal cells and having the number of data lines at least one more than that of the first data lines, and a switching part in each of the first data lines applying a video signal supplied from the first data lines to the second data lines.
Abstract:
A dispenser system for a liquid crystal display panel includes a table to overturn a substrate having at least one image display part on a first surface of the overturned substrate, and at least one syringe system to supply sealant onto a first surface of the overturned substrate to form a seal pattern along outer edges of the image display part on the first surface of the overturned substrate, wherein the at least one syringe system moves along horizontal directions.
Abstract:
An in-plane switching mode liquid crystal display device includes a plurality of gate lines and data lines defining a plurality of pixel regions, a driving device disposed within each of the pixel regions, at least one first electrode having a first width and at least one second electrode having a second width both arranged within the pixel region, and at least one third electrode having a third width overlapping at least one of the first and second electrodes to form a storage capacitor.