Abstract:
An Endurance Extension Module (EXM) for powering an Unmanned Underwater Vehicle. The EXM converts wave motion to locomotive thrust, towing the UUV from point to point or keeping it in place against an opposing current. The EXM may also supply the UUV with electricity for driving an electric motor or powering on-board electronics. The EXM can be retracted onto the UUV when not in use to minimize drag, or it can release the UUV as prologue to a subsequent rendezvous. The EXM-UUV combinations of this invention allow extended autonomous missions over wider territory for purposes such as surveying, monitoring conditions, or delivering cargo.
Abstract:
This invention provides a vessel system and methodology that can be used to promote growth of phytoplankton in the oceans. Unmanned self-controlled wave-powered vessels are equipped with storage units for dispensing a fertilizer, and with sensors to monitor ocean conditions and effects. Fleets of vessels move autonomously by on-board processing of GPS and directional information, piloting a path that is coordinated by a central processing unit. The vessels travel through a defined target area, creating a detailed survey of chemical and biological characteristics that affect grown. The data are processed in a computer model to identify precise locations and precise amounts of fertilizer that will produce the best results. Projected benefits of fertilizing plankton include sequestering CO2 from the atmosphere, and enhancing the marine food chain to improve the fish stock in and around the treated area.
Abstract:
Many of the known wave-powered devices ("WPDs") comprise (1) a float, (2) a swimmer, and (3) a tether connecting the float and the swimmer. The swimmer generates thrust as the float moves up and down due to surface waves. A WPD is provided with a rigid tether that can be moved from (a) a first position ("adjacent position") in which at least a part of the tether is adjacent to the float to (b) a second position ("extended position") in which the tether (i) is extended below the float and (ii) is at least in part substantially rigid. The WPD can if desired be transported, stored, or launched while the tether is in the adjacent position, and the tether can be moved into the extended position after the device has been launched and remain in the extended position while the device is being operated.
Abstract:
A wave-powered water vehicle includes a surface float, a submerged swimmer, and a tether which connects the float and the swimmer, so that the swimmer moves up and down as a result of wave motion. The swimmer includes one or more fins which interact with the water as the swimmer moves up and down, and generate forces which propel the vehicle forward. The vehicle, which need not be manned, can carry communication and control equipment so that it can follow a course directed by signals sent to it, and so that it can record or transmit data from sensors on the vehicle.
Abstract:
A method of detecting a leakage path in an electronic device includes iteratively performing operations until an iteration condition is satisfied. The operations include causing a capacitor to be set to a known state, measuring a voltage level of the capacitor, and storing data indicating the measured voltage level. The operations also include causing the capacitor to be connected to a potential leakage path, remeasuring the voltage level of the capacitor, and storing data indicating the remeasured voltage level. The operations further include comparing the measured voltage level and the remeasured voltage level to detect leakage in the potential leakage path. The iteration condition is satisfied when a difference between the measured voltage level and the remeasured voltage level satisfies a voltage threshold or when a count of iterations performed satisfies an iteration threshold.
Abstract:
A float (1 ) suitable for use as a buoy or as a component for a wave-powered vehicle. The float (1 ) includes an upper member (12) whose height can be changed and/or which remained substantially vertical even when the float is in wave-bearing water. A low drag cable (2) suitable for use as a tether in a wave-powered vehicle has a streamlined cross-section and includes a tensile member (21 ) near the front of the cross-section, at least one non-load-bearing member (22) behind the tensile member, and a polymeric jacket (23). Wave-powered vehicles having a float (1 ), a submerged swimmer (3) and a tether (2) connecting the float and the swimmer, include a means for determining whether the tether is twisted; or a means (91 ) for untwisting the tether; or a pressure-sensitive connection (71, 72, 73) which can disconnect the tether when the vehicle is dragged downwards by entanglement with a whale; or a 2-axis universal joint securing the tether to the float or to the swimmer; or elastic elements which absorb snap loads created by the tether; or two or more of these.
Abstract:
AUTONOMOUS WAVE-POWERED SUBSTANCE DISTRIBUTION VESSELS FOR FERTILIZING PLANKTON, FEEDING FISH, AND SEQUESTERING CARBON FROM THE ATMOSPHERE A fleet configured for fish stock assessment, the fleet comprising: (a) a plurality of autonomous wave-powered monitor vessels, each comprising: one or more observational sensor(s) configured for recognizing and monitoring fish in a body of water in which the vessel is situated; a positional sensor configured to determine the geographical location of the vessel; and a transmitter configured to transmit data wirelessly from the observational and the positional sensors to a central control unit; and (b) said central control unit, which is configured and programmed to communicate with each of the monitor vessels to direct navigation and receive and compile data regarding fish being monitored by the monitor vessel. 13272793_1
Abstract:
EQUIPO Y METODOS EN LOS CUALES SE COMBINA EL USO DE VEHICULOS OLAMOTRICES Y VEHICULOS AEREOS NO TRIPULADOS (UAV O DRONS), UN UAV PUEDE SER LANZADO DESDE UN VEHICULO OLAMOTRIZ, OBSERVAR OTRA EMBARCACION E INFORMAR LOS RESULTADOS DE SU OBSERVACION AL VEHICULO OLAMOTRIZ, EL CUAL A SU VEZ PUEDE INFORMAR LOS RESULTADOS DE LA OBSERVACION A UN PUNTO REMOTO, LUEGO DE ESTO, EL UAV PUEDE AMARIZAR Y SER RECUPERADO POR EL VEHICULO OLAMOTRIZ.
Abstract:
Many of the known wave-powered devices ("WPDs") comprise (1) a float, (2) a swimmer, and (3) a tether connecting the float and the swimmer. The swimmer generates thrust as the float moves up and down due to surface waves. A WPD is provided with a rigid tether that can be moved from (a) a first position ("adjacent position") in which at least a part of the tether is adjacent to the float to (b) a second position ("extended position") in which the tether (i) is extended below the float and (ii) is at least in part substantially rigid. The WPD can if desired be transported, stored, or launched while the tether is in the adjacent position, and the tether can be moved into the extended position after the device has been launched and remain in the extended position while the device is being operated.
Abstract:
An adaptable modular power system (AMPS) is hierarchical in a number of ways. AMPS modules connect to a backplane, and one or multiple AMPS backplanes can form an AMPS domain. At the same time, the vehicle electronics is modular, with various payload boxes needing to communicate with each other. A common power and signaling cable is provided to interconnect payload boxes. A dedicated connector system is also provided so that AMPS modules may communicate, control, receive data, and supply and receive power.