Abstract:
A respiration system includes a pressure regulator including a housing, an inlet for connection to a pressurized gas comprising oxygen, and a first data communication system, and a respiration facepiece including an interface to which the pressure regulator is removably attachable, at least one seal system to form a sealing engagement with the face of a user to encompass the nose and mouth of a wearer; an inspiration port in fluid connection with the pressure regulator interface and in fluid connection with the interior of the facepiece and at least one display within a volume of sealing engagement with the face of the user that is within the field of view of the user. The pressure regulator interface includes a second data communication system to receive data from the first data communication system to control the at least one display. A sealing attachment may, for example, be formed between the pressure regulator and the interface of the facepiece.
Abstract:
An electrochemical gas sensor includes a housing, a first working electrode within the housing and having a first section of gas transfer medium and a first layer of catalyst on the first section of gas transfer medium, and at least a second working electrode within the housing and having a second section of gas transfer medium and a second layer of catalyst on the second section of gas transfer medium. At least one of the first section of gas transfer medium and the second section of gas transfer medium includes at least one area in which the structure thereof has been irreversibly altered to limit diffusion of gas through the at least one of the first section of gas transfer medium or the second section of gas transfer medium toward the other of the at least one of the first section of gas transfer medium and the second section of gas transfer medium.
Abstract:
A helmet (200) includes a shell (210) having a lower edge, and an edge support (240) extending around the lower edge of the shell (200). The edge support has a greater structural rigidity than the shell. The helmet can further include a retention strap system (300), and the edge support can include at least one attachment to attach the retention strap system to the helmet.
Abstract:
A personal navigation system, including: at least one inertial sensor module associated with a user, the inertial sensor module comprising at least one sensor to generate location data associated with the user; a communication device to receive and/or transmit at least a portion of the location data; and an onsite computer to communicate with the communication device and receive at least a portion of the location data; wherein at least one of the inertial sensor module and the onsite computer is configured to determine at least one activity of the user based at least in part upon the location data; wherein the onsite computer is programmed to configure a display including a representation of the user based at least in part upon the location data; wherein at least one of the determination and the configuration is performed substantially in real-time.
Abstract:
A testing module for use with a gas detector, includes a plurality of gas inlets and outlets, each outlet being in fluid connection with one of the inlets. Each of the outlets is adapted to mate with and form a fluid connection with one of the inlets of a second like testing module. Gases can then flow from the outlets of the testing module into the inlets of the second like testing module. A gas container module for use with a gas container, includes a plurality of gas inlets and outlets, each inlet being in fluid connection with one of the outlets. Each of the inlets is adapted to mate with and form a fluid connection with one of the outlets on a second like gas container module. Gases can then flow from the outlets of the second like gas container module.
Abstract:
A method of communicating calibration information from an infrared gas sensor (200) includes the step of modulating infrared or visible light from an infrared energy source (230) in a manner that corresponds to calibration information to be transmitted from the sensor (200) through a transmissive section (250) in the sensor housing . Infrared energy from the infrared energy source (230) , which is within the housing of the sensor, also interacts with an analyte in a manner detectable by at least one detector (236a, 236b) within the housing.
Abstract:
The present invention relates to a photoacoustic gas sensor utilizing diffusion having a sensing volume and an acoustic pressure sensor volume containing an acoustic pressure sensor such that the fluid connection between the sensing volume and the acoustic pressure sensor volume restricts the flow of analyte gas therethrough but does not restrict the transmission of the photoacoustic signal therethrough.
Abstract:
A communications device for use with a protective helmet having a headband is provided. Generally, the communications device provides support member for a bone conduction microphone that is easily added to and removed from the protective helmet, allowing the communications device to be readily used with both new and existing protective helmets. While in use, support member positions the bone conduction microphone between the headband and a user's head, preferably between the napestrap and the center of the back of the user's head. The communications device can be used with any type of protective helmet, such as a fireman's helmet, a military helmet, a hard-hat, etc.
Abstract:
A neck seal for use in a protective hood includes an inner section including a passage for donning. The inner section is fabricated from an elastomeric material to form a seal around a neck of a user. The neck seal also includes an outer section adhered to the inner section. The outer section is fabricated from a material heat sealable to a hood covering material. In one embodiment, the elastomeric material of the inner section is a latex material. The outer section can, for example, be fabricated from a thermoplastic material. In one embodiment the thermoplastic material is a polyurethane such as a polyester-based polyurethane.
Abstract:
A small, portable electrochemical power cell, having an output voltage of over 4 V, and preferably over 5 V, includes an anode, a cathode having a fluorine compound and an electrolyte having an organic sulfur-containing compound to maintain ionic conductivity between the anode and the cathode. A method of fabricating such an electrochemical power cell includes the step of adding an electrolyte having an organic, sulfur-containing compound to maintain electrical conductivity between the anode and the cathode. An electrochemical power cell having a lithium anode, a CoF 3 cathode, an electrolyte to maintain ionic conductivity between the anode and the cathode and a cobalt complexing material within the electrolyte to complex cobalt ions is described.