Abstract in simplified Chinese:本揭示案提供一种供气面罩设备。该面罩设备可包括一面罩体、一脸罩及一波纹管。该面罩体可包括一经构形以向上延伸至一配戴者前额之邻近处的管子。该脸罩可经构形以将气体输送至该配戴者,且可包括一经构形以与该配戴者脸部接合之弹性缓冲垫部分及一经构形以支撑该缓冲垫部分的大体上为刚性之基座部分。该波纹管可经构形以将该管子与该脸罩之该大体上为刚性之基座部分相耦接。该波纹管可具弹性以允许该脸罩相对于该管子而移动。
Abstract in simplified Chinese:在此提供一种双稳定传感器,其包括一于其上可设置电性及光学组件之框架,以及一诸如覆模包覆件之包覆件,其被设置于该框架周围。一抵抗力提供组件被设置成与该被包覆之双稳定传感器形成一体或外置于其上而使得该双稳定传感器具有两个机械性稳定构形,俾借由克服由该抵抗力提供组件及/或由该包覆件所提供之抵抗力而在该等稳定构形之间变换。在一实施例中,该抵抗力提供组件包含一被设置于该框架之一铰链附近的弹性带,该弹性带系位在该包覆件内部或外置于该包覆件。在一实施例中,该传感器可被放置在一病患的手指、脚趾、耳朵等等,以获得脉动式血氧测定或其他生理测量値。
Abstract in simplified Chinese:本揭示案提供一种用于一供气面罩之噪音抑制排气系统。该系统可包括一脸罩、一臂总成及一排气部件。该脸罩可经配置以与一对象之脸部创建界面。该臂总成可经配置以支撑该脸罩。该排气部件可耦接至该臂总成并可包括一延伸穿过该排气部件之单一气体信道。该气体信道可自一形成于该排气部件之一第一侧面中的第一开口延伸至一形成于该排气部件之一第二侧面中的第二开口。该第一开口可具有一约0.01平方英吋至约0.03平方英吋的横截面积,且该第二开口具有一实质上大于该第一开口之该横截面积的横截面积。
Abstract in simplified Chinese:本揭示案提供一种用于将一面罩固定在一主体头部上之系统。该系统可包括一面罩基座、一面罩闩锁及一面罩头带。该面罩基座可经配置以支撑一用于将气体输送至该主体之气体输送管道。该面罩闩锁可围绕一大体上横向延伸越过该面罩基座之轴而枢轴地耦接至该面罩基座。该面罩头带可经配置以定位于一主体头部之周围且可耦接至该面罩闩锁,从而使得该面罩闩锁围绕该轴且相对于该面罩基座之旋转调整该面罩头带。
Abstract:
A pulse oximeter which determines multiple heart rates, and selects between them based on the metrics of only one of the heart rate calculations. A primary heart rate calculation method is selected, and is used unless its metrics indicate questionable accuracy, in which case an alternative rate calculation is available and is used instead.
Abstract:
Low power techniques for sensing cardiac pulses in a signal from a sensor are provided. A pulse detection block senses the sensor signal and determines its signal-to-noise ratio. After comparing the signal-to-noise ratio to a threshold, the drive current of light emitting elements in the sensor is dynamically adjusted to reduce power consumption while maintaining the signal-to-noise ratio at an adequate level. The signal component of the sensor signal can be measured by identifying systolic transitions. The systolic transitions are detected using a maximum and minimum derivative averaging scheme. The moving minimum and the moving maximum are compared to the scaled sum of the moving minimum and moving maximum to identify the systolic transitions. Once the signal component has been identified, the signal component is compared to a noise component to calculate the signal-to-noise ratio.