Abstract:
Polymer compositions useful as shaped articles such as synthetic yarns are disclosed. The polymer compositions include poly(dihydrocarbylsiloxane) components featuring one or more of octyl, dodecyl, cetyl, behenyl, vinyl, bis-vinyl, vinyl-reacted, or bis-vinyl-reacted substituents. The synthetic yarns have been used to produce tufted carpets having improved performance characteristics, including softness benefits, as well as improved water repellency and soil release.
Abstract:
The present invention provides an improved process for converting a diester of polyether polyol, e.g., PTMEA, to the corresponding dihydroxy product, e.g., polytetramethylene ether glycol (PTMEG) continuously in a reaction zone, such as, for example, a reactive distillation system, for achieving virtually complete conversion of PTMEA to PTMEG, and recovery of PTMEG free of unreacted or unconverted PTMEA and alkanol ester by-product.
Abstract:
Disclosed herein are methods for recovering diphosphite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are treatments to enhance extractability of the diphosphite-containing compounds.
Abstract:
The present invention teaches a filament yarn that has low wicking, i.e., less than or equal to about 6 mm; has a contact angle of greater than or equal to about 65° but less than about 90° according to the straw method; and a static voltage of +/- 400 volts (between -400 to +400 volts). Such yams are traditionally employed in weaving signs, banners, awning, tents and other products where moisture resistant yam is important. The yams can be made into fabrics that possess the same features as the yarn, namely low wicking, and water and oil repellency.
Abstract:
Provided herein are methods for generating cellular biomass in continuous aerobic fermentation systems. The biomass yield, and the concentration of polyhydroxyalkanoate within the biomass, are each directed to advantageous levels by operating the continuous fermentation system under particular nutrient limitation conditions. Also provided are biomass produced using the provided methods, and animal feed compositions including the provided biomass.
Abstract:
Provided herein are methods for increasing the yield of an extracellular product synthesized by an organism cultured in a continuous aerobic fermentation system. The extracellular product yield is increased through the use of an organism modified to decreased production of polyhydroxyalkanoate, to increase production of the extracellular product, and to include promoters that can be inducible in response to nutrient limitation conditions. The extracellular product yield is also increased by operating the continuous fermentation system under particular nutrient limitation conditions. Also provided are non-naturally occurring organisms that have been modified for use with the provided methods, and extracellular products made using the provided methods.
Abstract:
Methods of redirecting carbon flux and increasing C2/C3 or a C4/5/6 carbon chain length carbon-based chemical product yield in an organism, nonnaturally occurring organisms with redirected carbon flux and increased C2/C3 or C4/5/6 carbon chain length carbon-based chemical product yield and methods for using these organisms in production of C2/C3 or C4/5/6 carbon chain length carbon-based chemical products are provided.
Abstract:
Methods for increasing carbon-based chemical product yield in an organism by perturbing redox balance in an organism as well as nonnaturally occurring organisms with perturbed redox balance and methods for their use in producing carbon-based chemical products are provided.
Abstract:
Provided herein are novel, synthetic polypeptides having, for example, acyl-acyl carrier protein (ACP) thioesterase (TE) activity, including polypeptides that convert pimeloyl-ACP to pimelic acid. In some aspects, the synthetic polypeptides have advantageous enzymatic activity and/or improved substrate specificity relative to a wild type acyl-ACP TE.
Abstract:
Disclosed are materials and methods for managing aerobic biosynthesis. The materials include a fermenter system comprising a fermenter, a microorganism provided to the fermenter, and at least two control loops. The methods are directed to measuring and controlling different oxygen concentrations within the fermenter.