Abstract:
One embodiment provides a method comprising: providing a sample comprising a bulk amorphous alloy; scanning ultrasonically at least a portion of the sample to determine a parameter of the sample in the portion; and comparing the parameter to a predetermined standard to derive a property related to the sample.
Abstract:
Apparatus, systems and methods for improving chemical strengthening behavior in glass members are disclosed. According to one aspect, a method for processing a glass part formed using a fusion process or a float process includes annealing the glass part and then chemically strengthening the glass part. Annealing the glass part includes at least heating the glass part at a first temperature, maintaining the first temperature, and cooling the glass part to a second temperature using a controlled cooling process. Chemically strengthening the glass part includes facilitating an ion exchange between ions included in the glass part and ions included in a chemical strengthening bath.
Abstract:
Anodized electroplated aluminum structures and methods for making the same are disclosed. Cosmetic structures according to embodiments of the invention are provided by electroplating a non-cosmetic structure with aluminum and then anodizing the electroplated aluminum. This produces cosmetic structures that may possess desired structural and cosmetic properties and that may be suitable for use a housing or support members of electronic devices.
Abstract:
Apparatus, systems and methods for improving strength of a thin glass member for an electronic device are disclosed. In one embodiment, the glass member can have improved strength characteristics in accordance with a predetermined stress profile. The predetermined stress profile can be formed through multiple stages of chemical strengthening. The stages can, for example, have a first ion exchange stage where larger ions are exchanged into the glass member, and a second ion exchange stage where some of the larger ions are exchanged out from the glass member. In one embodiment, the glass member can pertain to a glass cover for a housing for an electronic device. The glass cover can be provided over or integrated with a display.
Abstract:
A method comprising: constructing a master curve plot comprising a plurality of reference curves, each reference curve representing a relationship between volume and temperature for one of a plurality of reference alloy samples having a chemical composition and various predetermined degrees of crystallinity; for an alloy specimen having the chemical composition and an unknown degree of crystallinity, obtaining a curve representing a relationship between volume and temperature thereof; and determining the unknown degree of crystallinity by comparing the curve to the master curve plot.
Abstract:
Disclosed is an injection molding system including a first plunger rod and a second plunger rod configured to move or transport molten material from a melt zone and into a mold. The first and second plunger rods are configured to control and contain the molten material therebetween while moving. The second plunger rod can also be positioned relative to the mold to apply pressure on one side of the mold as the first plunger rod pushes molten material into the mold on an opposite side to force the material into the mold cavity. The second plunger rod can further be used to eject a molded (bulk amorphous) object from the mold. The rods can move in a longitudinal direction (e.g., horizontally) between the melt zone and mold along a longitudinal axis.
Abstract:
Apparatus, systems and methods for improving strength of a thin glass member for an electronic device are disclosed. In one embodiment, the glass member can have improved strength by using multi-bath chemical processing. The multi-bath chemical processing allows greater levels of strengthening to be achieved for glass member. In one embodiment, the glass member can pertain to a glass cover for a housing of an electronic device.
Abstract:
An electronic device such as a media player may be formed from electrical components such as integrated circuits, buttons, and a battery. Electrical input-output port contacts may be used to play audio and to convey digital signals. Electrical components for the device may be mounted to a substrate. The components may be encapsulated in an encapsulant and covered with an optional housing structure. The electrical input-output port contacts and portions of components such as buttons may remain uncovered by encapsulant during the encapsulation process. Integrated circuits may be entirely encapsulated with encapsulant. The integrated circuits may be packaged or unpackaged integrated circuit die. The substrate may be a printed circuit board or may be an integrated circuit to which components are directly connected without interposed printed circuit board materials.
Abstract:
Accessories such as headsets for electronic devices are provided. A headset may be provided with a button controller assembly that has user-actuated buttons and a microphone. The microphone may be formed by mounting a microphone transducer on a printed circuit board. A housing may be mounted over the transducer to form a sealed cavity for the transducer. Circuitry may be mounted on portions of the printed circuit board that extend beyond the edges of the microphone housing. The button controller assembly may have dome switches. The dome switches may have a housing that encloses dome switch components and that forms a structural internal part for the button controller. The dome switch housing structure may have tabs or other engagement features that mate with corresponding engagement features in a button member. The button member may be pressed by a user to actuate a desired dome switch.