Abstract:
The application describes an X-ray detector, which uses direct X-ray conversion (DiCo) combined with CMOS pixel circuits. DiCo materials have to be used with high voltage to achieve a high field strength. This makes the sensor prone to leakage currents, which falsify the measured charge result. Moreover, most direct conversion materials suffer from large residual signals that lead to temporal artefacts (ghost images) in an X-ray image sequence. A circuit is described, which senses the sensor's dark current including residual signals from previous exposures before the sensor is exposed (again) to X-ray, and freezes relevant circuit parameters at the end of the sensing phase in such way, that the dark current (leakage current and residual signal) can still be drained during exposure. Therefore, the charge pulses generated in the sensor due to X-ray exposure can be integrated without charges carried by the leakage current or residual signal, thus obtaining a more accurate estimate of the deposited X-ray energy.
Abstract:
A detector unit (301) for detecting electromagnetic radiation (106), the detector unit (301) comprising a conversion material (332) adapted for converting impinging electromagnetic radiation (106) into electric charge carriers, a charge collection electrode (331) adapted for collecting the converted electric charge carriers, a shielding electrode (334, 335) adapted to form a capacitance with the charge collection electrode (331), and an evaluation circuit (312 to 315) electrically coupled with the charge collection electrode (331) and adapted for evaluating the electromagnetic radiation (106) based on the collected electric charge carriers.
Abstract:
A method for manufacturing a photo-responsive device having a photo- sensitive layer is proposed. The method comprises the following steps: a) providing a clean substrate inside an evacuated evaporation chamber; b) evaporating lead oxide (PbO) from a first crucible to form a seeding layer on the surface of the substrate; c)affecting upon the seeding layer such that only tetragonal lead oxide forms the seeding layer and/or such that the initially grown orthorhombic lead oxide forming the seeding layer is transformed into tetragonal lead oxide; and d) continuing to evaporate lead oxide until the final thickness of the photo- sensitive layer has been deposited onto the substrate. As a result the method yields a photo- responsive device comprising a photo-sensitive layer of lead oxide, which entirely consists of tetragonal lead oxide.
Abstract:
It is described an integrated circuit design and a method to fabricate the same for a high-efficiency, low-noise, position sensitive X-ray detection in particular for medical applications. The device (350) is based on deep recesses (354) filled with an X-ray sensitive scintillator material. A shallow first electrode (360) is formed on the surface of the substrate (352) sidewalls separating two neighboring recesses (354). This sidewall electrode (360) in combination with particular frontside wafer electrode (363) structure results in a full depletion of the entire device (350) and a removal of signal charge towards the low capacitance readout electrode (363). The described integrated circuit element (350) ensures high and not depth dependent light collection efficiency.
Abstract:
The invention relates to an anti-scatter arrangement as well as to a radiation detector (110) and an examination apparatus comprising such an arrangement. The anti-scatter arrangement comprises an actuator (113) by which an anti-scatter grid (111) can be tilted such that its focus axis (A) can be adjusted to different focal spots (F) of a radiation source (120).
Abstract:
According to an embodiment of the invention, a radiation detector device (10) for detecting a primary radiation (6) comprises a scintillator (12) which generates a converted primary radiation in response to incoming primary radiation (6) and a photo detector (14) for detecting the converted primary radiation. The radiation detector device (10) further comprises a secondary radiation source (20) for irradiating the scintillator (12) with a secondary radiation (22) which has a wavelength different from a wavelength of the first radiation (6) and which is capable of producing a spatially more uniform response of the scintillator (12) to primary radiation. In an embodiment of the invention, the radiation detector device (10) is an X-ray detector of an X-ray imaging apparatus where the primary radiation is X-ray radiation and the secondary radiation has a wavelength between 350 nm and 450 nm. According to an embodiment, the irradiation with the secondary radiation, e.g. UV radiation, produces a uniform gain distribution of the X-ray detector (10).
Abstract:
The invention relates to a detector element for x-radiation, which can be used in particular in a flat dynamic x-ray detector (FDXD). In the detector element, a directly converting conversion layer (2) is arranged between an electrode layer (2) and a matrix of pixel electrodes (4), there also being a photoconductive separating layer (3) between the pixel electrodes (4) and the conversion layer (2). In the unilluminated state, the separating layer (3) acts as an electrical barrier for free charge carriers of the conversion layer (2), which have been produced by x-radiation and migrate in the electric field between the electrodes (1, 4). After readout of the charge transfers in the pixel electrodes (4), the separating layer (3) can be rendered conductive by illumination with reset light from a diode arrangement (6), so that charge accumulations at its interface can flow away. The separating layer (3) can prevent perturbing dark currents, while charge accumulation can at the same time be avoided by the repeated reset phases.
Abstract:
The invention relates to a detector arrangement for the conversion of electromagnetic radiation into electrical signals. The detector arrangement includes sensitive areas (D1, D2, D3, D4), where each sensitive area corresponds to a respective electrical signal, and at least two of the sensitive areas mesh with one another in such a manner that non-overlapping envelopes (C1, C2, C3, C4) of the individual meshing sensitive areas also mesh with one another.