Abstract:
An electromagnetic radiation detection circuit includes a photodetector transforming the received electromagnetic radiation into an electric current. A bias circuit is connected to the photodetector. An amplifying circuit has an input terminal coupled to the photodetector. An amplifying transistor has a first low-impedance electrode forming the input terminal of the amplifying circuit and a second low-impedance electrode coupled to an output terminal of the detection circuit. The transistor is configured to conduct the current applied on the first electrode. A high-impedance electric load is connected to the second electrode to deliver a voltage representative of the electric current originating from the photodetector.
Abstract:
The substrate includes successively a first semiconductor layer having a first bandgap energy, a semiconductor buffer layer, a second semiconductor layer having a first bandgap energy different from the first bandgap energy. Two photodetectors sensitive to two different colors are formed respectively on the first and second semiconductor layers. A first biasing pad electrically connects the first semiconductor layer to a first biasing circuit. A second biasing pad electrically connects the second semiconductor layer to a second biasing circuit. The first biasing pad is devoid of electrical contact with the second semiconductor layer.
Abstract:
Le circuit de détection de rayonnement lumineux comporte un photodétecteur (1). Le photodétecteur (1) est couplé à trois condensateurs (C1, C2, C3) par l'intermédiaire de trois interrupteurs. Les condensateurs (C1, C2, C3) sont montés en parallèles de manière à former une charge capacitive (4) dont la valeur de capacité électrique évolue en fonction des ouvertures/fermetures des interrupteurs. Cette configuration permet de stabiliser la tension présente sur la borne de sortie (S) du circuit de détection pour une plus large gamme d'illumination subie par le photodétecteur (1).
Abstract:
Un dispositif de détection de rayonnement infrarouge comporte un circuit de détection (1) du rayonnement infrarouge muni d'au moins un photodétecteur. Un circuit de lecture (2) est connecté électriquement au circuit de détection (1) et il est configuré pour traiter le signal émis par le circuit de détection (1). Un refroidisseur de Joule-Thomson vient refroidir une table froide (3) connectée thermiquement et mécaniquement au circuit de détection (1) et au circuit de lecture (2). La table froide (3) comportant une cavité interne (7) alimentée en mélange gazeux. Un orifice de détente (5) du mélange gazeux est disposé à une entrée de la cavité interne (7). Une sortie du compresseur (6) vient alimenter l'orifice de détente (5) en un mélange gazeux. L'entrée du compresseur (6) reçoit le mélange gazeux détendu en provenance d'une sortie de la cavité interne (7).
Abstract:
According to the invention, the substrate (3) sequentially comprises a first semiconductor layer (5) having a first band gap energy, a buffer semiconductor layer (6) a second semiconductor layer (7) having a second band gap energy different from the first band gap energy. Two photo-detectors (1, 2) sensitive to two different colors are respectively formed by means of the first and second semiconductor layers (5, 7). The first semiconductor layer (5) comprises two main opposite surfaces. The first main surface is covered by the second semiconductor layer (7). The second main surface is covered or not by a passivation film (4) having a thickness equal to or lower than 3 μm.
Abstract:
Une matrice de pixel est organisée en lignes de pixels (L). Chaque pixel est soit dans un premier état soit dans un deuxième état. La matrice contient majoritairement des pixels dans le deuxième état. Chaque ligne (L) de pixels est testée afin de déterminer si elle contient ou non un pixel dans un premier état. Le résultat de ce test pour chaque ligne est inscrit dans un récepteur (3). Les lignes (L) possédant au moins un pixel dans le premier état sont analysées plus finement afin de déterminer la position de ce ou de ces pixels dans la ligne (L).
Abstract:
The analog-to-digital converter includes a first stage in which a voltage to be converted is applied to the input of a first comparator. The first comparator delivers, on a first digital output, a first digital result representative of the comparison between the voltage to be converted and the comparison voltage. The first digital output is connected to a calculator of a first intermediate voltage. A second comparator compares the first intermediate voltage with the comparison voltage and delivers a second digital result on a second digital output terminal. The second digital output terminal is connected to a second calculator of residual voltage that is a function of the voltage to be converted, of first and second voltages and of the first and second digital results. The first calculator is formed by the second calculator.
Abstract:
The detection device comprises a cold finger which performs the thermal connection between a detector and a cooling system. The cold finger comprises at least one side wall at least partially formed by an area made from the amorphous metal alloy. Advantageously, the whole of the cold finger is made from the amorphous metal alloy.
Abstract:
The circuit of detection of light radiation includes a photodetector. The photodetector is coupled to three capacitors by means of three switches. The capacitors are parallel mounted to form a capacitive load whose value of electrical capacity changes as a function of the openings/closures of the switches. This configuration allows to stabilize the voltage present on the output terminal in the detection circuit for a wider range of illumination sustained by photodetector.
Abstract:
A method of positioning elements or additional technological levels on the incident surface of an infrared detector of hybridized type, said detector being formed of a detection circuit comprising an array network of photosensitive sites for the wavelength ranges of interest, hybridized on a read circuit, said detection circuit resulting from the epitaxial growth of a detection material on a substrate, comprising forming within the detection circuit indexing patterns by marking of the growth substrate.