Abstract:
A communication apparatus and method in a wireless communication system that support multiple Orthogonal Frequency Division Multiplexing (OFDM) parameter sets. A method includes determining a respective OFDM parameter set for each of multiple Radio Frequency (RF) chains; and processing an OFDM signal in each of the multiple RF chains based on a parameter value defined in the respective OFDM parameter set.
Abstract:
Provided is a device and a method for eliminating inter-cell interference in Multiple Input Multiple Output (MIMO) wireless communication system. The method for operating a user equipment for eliminating the inter-cell interference includes determining one or more optimum bands among bands not requested to be restricted from a neighboring cell, determining at least one of band and Precoding Matrix Index (PMI) to be requested to be restricted to the neighboring cell among the determined one or more optimum bands, and feeding back at least one of the band and PMI to be requested to be restricted to the neighboring cell to a serving base station.
Abstract:
A method and apparatus reduce overhead of feedback in a closed loop Multiple Input Multiple Output (MIMO) system. A controller feeds back the long-term Precoder Matrix Index (PMI) to a serving base station under direction of the serving base station when the long term PMI feedback transmission is required, generates a new codebook using the long term PMI, and determines a short term PMI from the new codebook. A feedback transmitter feeds back the short-term PMI to the serving base station.
Abstract:
A method for operating a Mobile Station (MS) in a Multiple Input Multiple Output (MIMO) wireless communication system is provided. The method includes measuring channel quality for a serving Base Station (BS), if the channel quality is less than a threshold, measuring interference power from one or more neighbor BSs, determining a Precoding Matrix Index (PMI) and a priority metric for each neighbor BS, and feeding back at least one of the PMI, a PMI type indicator, the priority metric, and the channel quality to the serving BS.
Abstract:
A communication apparatus and method in a wireless communication system that support multiple Orthogonal Frequency Division Multiplexing (OFDM) parameter sets. A method includes determining a respective OFDM parameter set for each of multiple Radio Frequency (RF) chains; and processing an OFDM signal in each of the multiple RF chains based on a parameter value defined in the respective OFDM parameter set.
Abstract:
In one embodiment, a method for network entry in a wireless communication system includes acquiring ranging code configuration information, which represents the corresponding relationship among multiple beam vectors, multiple ranging sequences, and multiple ranging channels, determining an optimal downlink beam vector, and transmitting one of the ranging sequences corresponding to the optimal downlink beam vector to a Base Station (BS) through one of the ranging channels corresponding to the optimal downlink beam vector.
Abstract:
An apparatus and a method for ranging in a distributed antenna system are provided. A method for an operation of a Mobile Station (MS) in a distributed antenna system includes obtaining per-group ranging code configuration information indicating a ranging code allocation for each antenna port group, determining an antenna port group that the MS belongs to, and performing a ranging procedure by one of a plurality of ranging codes allocated to the antenna port group that the MS belongs to.
Abstract:
Disclosed is a method and an apparatus for subchannel assignment for suppressing inter-antenna interference in an Orthogonal Frequency Division Multiplexing Access (OFDMA) system based distributed wireless communication system equipped with antennas that are randomly distributed in a geographical manner and can simultaneously communicate with multiple Subscriber Stations (SSs). The method includes selecting and obtaining access to distributed antennas which satisfy the data transmission rate that an SS requires and with which the SS can communicate; re-queuing a distributed antenna having the maximum transmitted power within the same cell in high priority; and assigning subchannels to the relevant distributed antennas in an order from the relevant distributed antenna having the high priority.
Abstract:
A calibration apparatus and a calibration method for multicell Multiple Input Multiple Output (MIMO) transmission in a multiple antenna system are provided. More particularly, an operating method of a Mobile Station (MS) for performing calibration for multicell MIMO transmission in a multiple antenna system includes negotiating a multi-Base Station (BS) joint processing with a BS, receiving a control message including information instructing multi-BS calibration for sounding based on the multi-BS joint processing, from the BS; when receiving the control message involving the multi-BS joint processing, generating a second sounding sequence by mapping estimated phases of downlink channels per subcarrier of BSs to a first sounding sequence allocated from the BS, and transmitting the second sounding sequence, including the phases of the downlink channels per subcarrier, over a sounding symbol interval with respect to each of the BSs involving the multi-BS joint processing. Hence, feedback overhead in the calibration of the multicell MIMO transmission can be reduced.
Abstract:
Disclosed is a method and an apparatus for subchannel assignment for suppressing inter-antenna interference in an Orthogonal Frequency Division Multiplexing Access (OFDMA) system based distributed wireless communication system equipped with antennas that are randomly distributed in a geographical manner and can simultaneously communicate with multiple Subscriber Stations (SSs). The method includes selecting and obtaining access to distributed antennas which satisfy the data transmission rate that an SS requires and with which the SS can communicate; re-queuing a distributed antenna having the maximum transmitted power within the same cell in high priority; and assigning subchannels to the relevant distributed antennas in an order from the relevant distributed antenna having the high priority.