Abstract:
A direct smelting plant for producing molten metal from a metalliferous feed material using a molten bath based direct smelting process is disclosed. The plant includes a plurality of gas injection lances to inject the oxygen-containing gas into the vessel that extend downwardly through openings in a side wall of a direct smelting vessel.
Abstract:
A direct smelting plant for producing molten metal from a metalliferous feed material using a molten bath based direct smelting process is disclosed. The plant includes a plurality of crane access zones that are outboard of a gas delivery main to enable solids injection lances to be removed from and replacement lances to be positioned in openings in a side wall of a direct smelting vessel. The plant also includes a plurality of crane access zones that are inboard of the gas delivery main to enable gas injection lances to be removed from and replacement lances to be positioned in openings in the side wall of the vessel.
Abstract:
A direct smelting plant for producing molten metal from a metalliferous feed material using a molten bath based direct smelting process is disclosed. The plant includes a gas delivery duct assembly extending from a gas supply location away from the vessel to deliver oxygen-containing gas to gas injection lances extending into a direct smelting vessel. The gas delivery duct assembly includes a single gas delivery main connected to the gas injection lances to supply oxygen-containing gas to the gas injection lances. The gas delivery main is located at a height above a lower half of the vessel.
Abstract:
A direct smelting plant for producing molten metal from a metalliferous feed material is disclosed. The plant includes a fixed smelting vessel to hold a molten bath of metal and slag and a gas space above the bath. The plant also includes means for supplying solids and gas feed materials to the vessel and for tapping molten material from the vessel. The plant also includes at least two platforms for supporting plant operators at different heights of the vessel. The metal tapping means and the slag tapping means are located so as to be accessible by plant operators on a cast house platform and the end metal tapping means and the end slag tapping means are located to be accessible by plant operators on an end tap platform that is at a lower height than the cast house platform.
Abstract:
A method of analysing particles of a material which include a constituent is disclosed. The method comprises the steps of exposing particles of the material to x radiation having a range of x-radiation energies, detecting x-radiation intensities at two different energy levels transmitted through the particles, and determining the concentration of the constituent in particles from the detected intensities.
Abstract:
A method of agglomerating mined ore for use in a heap leaching process includes exposing ore fragments to electromagnetic radiation and causing fractures to form in the fragments and thereafter agglomerating fragments.
Abstract:
A direct smelting plant for producing molten metal from a metalliferous feed material using a molten bath based direct smelting process is disclosed. The plant includes metalliferous material injection lances positioned in pairs around the perimeter of a side wall of the vessel and a single solid carbonaceous material injection lance positioned between adjacent pairs of the metalliferous material injection lances.
Abstract:
Drill hole sequence planning equipment (14) includes a position determining module (18) for determining an initial location of a mobile drill rig (12). A selection module (24) selects a destination location for the drill rig (12). A corridor establishment module (26) establishes a corridor between the initial location of the drill rig (12) and its destination location, the corridor having a selected width. A processing unit (28) is responsive to the modules (18, 24 and 26) for selecting a hole location of each hole within the corridor to be drilled by the drill rig (12) sequentially as it moves from its initial location to its destination location.
Abstract:
This disclosure relates to updating an estimate for a material property of a volume, for example, updating the estimate of iron concentration in a block of a mine block model. The estimate is based on values of one or more model parameters. A processor receives a measurement of the material property outside the volume. Then, the processor determines updated values for the one or more model parameters based on the estimate and the measurement and determines an updated estimate for the material property of the volume based on the updated values for the one or more model parameters and the measurement. Since a measurement outside the volume is used to determine updated model parameters and an updated estimate of that volume, the model is more accurate and the estimate for the material property of the volume is also more accurate although measurements within that volume are not available.
Abstract:
The present invention relates to a direct smelting plant and a direct smelting process for producing molten metal from a metalliferous feed material, such as ores, partly reduced ores, and metal-containing waste streams, the latter of which comprising the steps of (a) pretreating metalliferous feed material in a pretreatment unit and producing pretreated feed material having a temperature of at least 200°C, (b) storing pretreated metalliferous feed material having a temperature of at least 200°C under pressure in a hot feed material storage means, (c) transferring pretreated metalliferous feed material having a temperature of at least 200°C under pressure in a hot feed material transfer line to a solids delivery means of a direct smelting vessel, and (d) delivering pretreated metalliferous feed material into the direct smelting vessel and smelting metalliferous feed material to molten metal in the vessel.