Abstract:
A memory system includes a first external device, a second external device, and a multi-port memory device connected to the first and second external devices. The multi-port memory system includes: a first port and a second port connected to the first and second external devices, respectively, a first bank group having at least one memory bank, the first bank group configured to be accessed by the first external device through the first data port; a second bank group having at least one memory bank, the second bank group configured to be accessed by the second external device through the second data port; a third bank group having at least one memory bank, wherein the third bank group is configured to be selectively accessed by the first external device through the first data port or the second external device through the second data port. The multi-port memory system may prevent data collisions which occur when two ports simultaneously attempt to access the same memory bank.
Abstract:
A host integrated circuit device can include a host interface circuit that is configured to access a resource associated with the host integrated circuit device in a first device interface format based on a request from a remote integrated circuit device located outside the host integrated circuit device in a second device interface format.
Abstract:
Microcomputer systems include an instruction processor therein that can process both normal length instructions and compressed instructions. The normal length instructions and the compressed instructions are provided from memory to an instruction register and then passed through decoding circuitry to a processor core. The decoding circuitry preferably comprises a demultiplexer having a data input that receives a first multi-bit instruction from the instruction register and a select input that receives a first select signal (SEL1). A compressed instruction decoder is also provided. The compressed instruction decoder has a data input electrically coupled to a first data output of the demultiplexer and a select input that receives a second select signal (SEL2). A multiplexer is also provided. The multiplexer has a first data input electrically coupled to an output of the compressed instruction decoder, a second data input electrically coupled to a second data output of the demultiplexer and a select input that receives the first select signal (SEL1). The output of the demultiplexer is electrically coupled to the processor core.
Abstract:
An image sensor module is provided. The image sensor module includes a printed circuit board (PCB), an image sensor chip disposed on a first plane of the PCB and electrically connected to the PCB, and an image signal processing chip disposed on the first plane of the PCB and electrically connected to the PCB. An aspect ratio of the image signal processing chip is at least two times greater than an aspect ratio of the image sensor chip. A minimum feature size of a metal line implemented in the image sensor chip is at least 1.5 times greater than a minimum feature size of a metal line implemented in the image signal processing chip.
Abstract:
An image sensor module is provided. The image sensor module includes a printed circuit board (PCB), an image sensor chip disposed on a first plane of the PCB and electrically connected to the PCB, and an image signal processing chip disposed on the first plane of the PCB and electrically connected to the PCB. An aspect ratio of the image signal processing chip is at least two times greater than an aspect ratio of the image sensor chip. A minimum feature size of a metal line implemented in the image sensor chip is at least 1.5 times greater than a minimum feature size of a metal line implemented in the image signal processing chip.
Abstract:
A multi-processor system includes a first processor, a second processor communicable with the first processor, a first non-volatile memory for storing first codes and second codes to respectively boot the first and second processors, the first memory communicable with the first processor, a second volatile memory designated for the first processor, a third volatile memory designated for the second processor, and a fourth volatile memory shared by the first and second processors.
Abstract:
An electronic information system comprises an external storage device and an application processor. The external storage device stores boot code and the application processor is adapted to receive the boot code from the external storage device and to perform a system booting operation during a power-up operation by executing the boot code.
Abstract:
An ECC (error correction code) controller of a flash memory device which stores an M-bit data (M being a positive integer equal to or greater than 2) comprises a first ECC block which generates a first ECC data from a program data to be stored in the flash memory device according to a first error correcting method and a second ECC block which generates a second ECC data from the first ECC data and the program data output from the first ECC block according to a second error correcting method, the program data, the first ECC data, and the second ECC data being stored in the flash memory device.
Abstract:
A multi-processor system includes a first processor, a second processor communicable with the first processor, a first non-volatile memory for storing first codes and second codes to respectively boot the first and second processors, the first memory communicable with the first processor, a second volatile memory designated for the first processor, a third volatile memory designated for the second processor, and a fourth volatile memory shared by the first and second processors.
Abstract:
An electronic information system comprises an external storage device and an application processor. The external storage device stores boot code and the application processor is adapted to receive the boot code from the external storage device and to perform a system booting operation during a power-up operation by executing the boot code.