Abstract:
A method of bonding includes using a bonding layer having a fluorinated oxid e. Fluorine may be introduced into the bonding layer by exposure to a fluorine- containing solution, vapor or gas or by implantation. The bonding layer may also be formed using a method where fluorine is introduced into the layer during its formation. The surface of the bonding layer is terminated with a desired species, preferably an NH2 species. This may be accomplished by exposing the bonding layer to an NH4OH solution. High bonding strength is obtained at room temperature. The method may also include bonding two bondin g layers together and creating a fluorine distribution having a peak in the vicinity of the interface between the bonding layers. One of the bonding layers may include two oxide layers formed on each other. The fluorine concentration may also have a second peak at the interface between the two oxide layers.
Abstract:
Systems and methods for efficient transfer of elements are disclosed. A film which supports a plurality of diced integrated device dies can be provided. The plurality of diced integrated device dies can be disposed adjacent one another along a surface of the film. The film can be positioned adjacent the support structure such that the surface of the film faces a support surface of the support structure. The film can be selectively positioned laterally relative to the support structure such that a selected first die is aligned with a first location of the support structure. A force can be applied in a direction nonparallel to the surface of the film to cause the selected first die to be directly transferred from the film to the support structure.
Abstract:
A waffle pack device including a member having recesses in a surface of the member to accommodate die from at least one semiconductor wafer. The member is compatible with semiconductor wafer handling equipment and/or semiconductor wafer processing. Preferably, the member accommodates at least a majority of die from a semiconductor wafer. Further, one semiconductor device assembly method is provided which removes die from a singular waffle pack device, places die from the single waffle pack device on a semiconductor package to assemble from the placed die all die components required for an integrated circuit, and electrically interconnects the placed die in the semiconductor package to form the integrated circuit. Another semiconductor device assembly method is provided which removes die from at least one waffle pack device, places die from the at least one waffle pack device on a semiconductor package to assemble from the placed die device components required for an integrated circuit, and electrically interconnects the placed die in the semiconductor package to form the integrated circuit.
Abstract:
ABSTRACT: A method of connecting elements such as semiconductor devices and a device having connected elements such as semiconductor devices. A first element having a first contact structure is bonded to a second element having a second contact structure. A single mask is used to form a via in the first element to expose the first contact and the second contact. The first contact structure is used as a mask to expose the second contact structure. A contact member is formed in contact with the first and second contact structures. The first contact structure may have an aperture or gap through which the first and second contact structures are connected. A back surface of the first contact structure may be exposed by the etching.
Abstract:
A method for forming a direct hybrid bond and a device resulting from a direct hybrid bond including a first substrate having a first set of metallic bonding pads, preferably connected to a device or circuit, capped by a conductive barrier, and having a first non- metallic region adjacent to the metallic bonding pads on the first substrate, a second substrate having a second set of metallic bonding pads capped by a second conductive barrier, aligned with the first set of metallic bonding pads, preferably connected to a device or circuit, and having a second non-metallic region adjacent to the metallic bonding pads on the second substrate, and a contact-bonded interface between the first and second set of metallic bonding pads capped by conductive barriers formed by contact bonding of the first non-metallic region to the second non-metallic region.
Abstract:
A method of connecting elements such as semiconductor devices and a device having connected elements such as semiconductor devices. A first element (11) having a first contact structure (12) is bonded to a second element (18) having a second contact structure (17). A single mask (40) is used to form a via (50) in the first element to expose the first contact and the second contact. The first contact structure is used as a mask to expose the second contact structure. A contact member (92) is formed in contact with the first and second contact structures. The first contact structure may have an aperture or gap (60) through which the first and second contact structures are connected. A back surface of the first contact structure may be exposed by the etching.
Abstract:
A bonded device structure including a first substrate having a first set of metallic bonding pads, preferably connected to a device or circuit, and having a first non-metallic region adjacent to the metallic bonding pads on the first substrate, a second substrate having a second set of metallic bonding pads aligned with the first set of metallic bonding pads, preferably connected to a device or circuit, and having a second non-metallic region adjacent to the metallic bonding pads on the second substrate, and a contact-bonded interface between the first and second set of metallic bonding pads formed by contact bonding of the first non-metallic region to the second non-metallic region. At least one of the first and second substrates may be elastically deformed.
Abstract:
A bonded device structure including a first substrate having a first set of conductive contact structures, preferably connected to a device or circuit, and having a first non-metallic region adjacent to the contact structures on the first substrate, a second substrate having a second set of conductive contact structures, preferably connected to a device or circuit, and having a second non-metallic region adjacent to the contact structures on the second substrate, and a contact-bonded interface between the first and second set of contact structures formed by contact bonding of the first non-metallic region to the second non- metallic region. The contact structures include elongated contact features, such as individual lines or lines connected in a grid, that are non-parallel on the two substrates, making contact at intersections. Alignment tolerances are thus improved while minimizing dishing and parasitic capacitance.
Abstract:
A method of three-dimensionally integrating elements such as singulated die or wafers and an integrated structure having connected elements such as singulated dies or wafers. Either or both of the die and wafer may have semiconductor devices formed therein. A first element having a first contact structure is bonded to a second element having a second contact structure. First and second contact structures can be exposed at bonding and electrically interconnected as a result of the bonding. A via may be etched and filled after bonding to expose and form an electrical interconnect to interconnected first and second contact structures and provide electrical access to this interconnect from a surface. Alternatively, first and/or second contact structures are not exposed at bonding, and a via is etched and filled after bonding to electrically interconnect first and second contact structures and provide electrical access to interconnected first and second contact structure to a surface. Also, a device may be formed in a first substrate, the device being disposed in a device region of the first substrate and having a first contact structure. A via may be etched, or etched and filled, through the device region and into the first substrate before bonding and the first substrate thinned to expose the via, or filled via after bonding.
Abstract:
A waffle pack device including a member having recesses in a surface of the member to accommodate die from at least one semiconductor wafer. The member is compatible with semiconductor wafer handling equipment and/or semiconductor wafer processing. Preferably, the member accommodates at least a majority of die from a semiconductor wafer. Further, one semiconductor device assembly method is provided which removes die from a singular waffle pack device, places die from the single waffle pack device on a semiconductor package to assemble from the placed die all die components required for an integrated circuit, and electrically interconnects the placed die in the semiconductor package to form the integrated circuit. Another semiconductor device assembly method is provided which removes die from at least one waffle pack device, places die from the at least one waffle pack device on a semiconductor package to assemble from the placed die device components required for an integrated circuit, and electrically interconnects the placed die in the semiconductor package to form the integrated circuit.