一种木质纤维素纳米纤维的制备方法

    公开(公告)号:CN110130136B

    公开(公告)日:2022-03-18

    申请号:CN201910400474.8

    申请日:2019-05-14

    Abstract: 本发明公开了一种木质纤维素纳米纤维的制备方法,包括如下步骤:(1)将氢键受体和氢键给体混合制备低共熔溶剂;(2)将疏解后的木质纤维素原料和步骤(1)的低共熔溶剂混合,加热处理,得到润胀疏解且表面酯化的木质纤维素混合物;(3)步骤(2)所得的混合物经机械处理后得到表面酯化的木质纤维素纳米纤维分散液;(4)所述步骤(3)的分散液经抽滤、清洗、分离和干燥制得木质纤维素纳米纤维。该方法制备的产品,长径比高且粒径分布均一,分散稳定性和再分散性明显提高,与聚合物基质复合时界面相容性较好。本发明的制备工艺条件温和、毒性小,易于操作。

    微纳木质纤维素复合材料的制备方法、复合材料及应用

    公开(公告)号:CN113136038A

    公开(公告)日:2021-07-20

    申请号:CN202110346530.1

    申请日:2021-03-31

    Abstract: 本发明公开了微纳木质纤维素复合材料的制备方法、复合材料及应用,该方法包括以下步骤:S1、将木质纤维素加入低共熔溶剂中进行加热润胀处理,再通过机械处理得到微纳木质纤维素分散液;S2、向所述微纳木质纤维素分散液中加入催化剂,经加热反应制备得到同时含有自聚物与接枝聚合改性的微纳木质纤维素的微纳木质纤维素复合材料。有益效果:通过在低共熔溶剂体系下“一锅法”高效制备微纳木质纤维素及微纳木质纤维素复合材料,具有制备过程环保绿色、溶剂成本低等显著特点,同时还具有反应条件温和、可操作性强、无化学品污染等优势,所制备的微纳木质纤维素复合材料可广泛应用于工程材料、包装材料、生物医药材料等领域。

    一种用木质素原位修饰金芯片的方法

    公开(公告)号:CN109187957B

    公开(公告)日:2021-06-18

    申请号:CN201811053639.0

    申请日:2018-09-04

    Abstract: 本发明涉及木质素原位修饰金芯片的方法。石英晶体微天平(QCM)和表面等离子体共振仪(SPR)技术是实时、原位研究生物大分子在固体界面的吸附是重要工具,前者同时检测石英晶体频率的变化(对应感应器上的重量)和吸附层的能量耗散值(对应感应器上薄膜的结构)的变化,后者只研究“干物质”的变化。传统的木质素修饰金芯片的方法是通过溶解木质素然后旋涂的方法得到,其缺点是粗糙度较高。本发明采用先在金芯片上预先修饰牛血清蛋白或者纤维素酶的方法,然后再在其表面原位吸附一层木质素以制备木质素传感器,制备所得芯片更加平滑。

    pH敏感型蚕丝蛋白纳米纤维及其分散液、制备方法和应用

    公开(公告)号:CN109161975B

    公开(公告)日:2021-02-02

    申请号:CN201811092035.7

    申请日:2018-09-18

    Abstract: 本发明属于蚕丝蛋白纳米纤维的制备技术领域,涉及一种pH敏感型蚕丝蛋白纳米纤维及其分散液、制备方法和应用。本发明的制备方法,包括:向酸性溶液中加入蚕丝,得到混合液;将所述混合液进行恒温加热,搅拌,得到固体悬浮液;分离所述固体悬浮液中的水不溶物,将所述水不溶物洗涤至中性,得到pH敏感型蚕丝蛋白纳米纤维。该蚕丝蛋白纳米纤维是不溶于水的结晶结构,不会发生构象转变,不会发生凝胶化,可以稳定分散于水溶液,具有良好的pH响应性和生物相容性。本发明采用的制备方法工艺简单,无毒无害,提高了蚕丝蛋白纳米纤维的得率,为实现蚕丝蛋白基生物质资源的高效利用提供了新思路和新方法。

    一种高浓湿态及干态几丁质纳米纤维/晶须的制备及其再分散的方法

    公开(公告)号:CN108192113B

    公开(公告)日:2020-10-30

    申请号:CN201810019191.4

    申请日:2018-01-09

    Abstract: 本发明公开了一种高浓湿态及干态几丁质纳米纤维/晶须的制备及其再分散的方法,将几丁质原料进行预处理得到正电性或负电性几丁质,在水介质中进行匀浆和超声处理,离心获得几丁质纳米纤维/晶须分散液,之后向分散液添加盐类物质或再调p H使几丁质纳米纤维/晶须絮凝,浓缩得到高浓湿态的几丁质纳米纤维/晶须,干燥得到干态的几丁质纳米纤维/晶须。在以水溶液对高浓湿态或干态的几丁质纳米纤维/晶须脱盐处理后,进行机械处理成功得到再分散的几丁质纳米纤维/晶须分散液。本发明不但成功实现了几丁质纳米纤维/晶须析出、浓缩、干燥、再分散,而且由于使用的盐类物质成本低廉,为几丁质纳米纤维/晶须的实际产业化应用提供了简单有效的途径。

    一种纤维素基3D打印线材的制备方法

    公开(公告)号:CN105295106B

    公开(公告)日:2019-08-09

    申请号:CN201510881126.9

    申请日:2015-12-03

    Abstract: 本发明涉及一种纤维素基3D打印线材的制备方法,属于生物质基3D打印材料领域。目的是为了提供一种生产成本低、工业化容易实施的生物质基3D打印材料的制备方法。将纤维素原料经过聚乙二醇(PEG;MW=400)结合机械处理后,制得小于10μm的纤维素聚乙二醇分散液,用二氯甲烷洗去聚乙二醇得到纤维素的二氯甲烷悬浮液,加入一定量的硅烷偶联剂进行表面硅烷化改性。将改性的纤维素、增塑剂聚乙二醇、增韧剂溶液加到一定浓度的聚乳酸的二氯甲烷溶液中,混合均匀后,通过冷凝装置回收除去二氯甲烷溶剂。最后在一定温度下通过线型挤塑机挤塑制得纤维素基3D打印线材。

    一种用牛血清蛋白原位修饰金芯片的方法

    公开(公告)号:CN109239331A

    公开(公告)日:2019-01-18

    申请号:CN201811053638.6

    申请日:2018-09-04

    Abstract: 本发明涉及一种牛血清蛋白原位修饰金芯片的方法。石英晶体微天平(QCM)和表面等离子体共振仪(SPR)技术是实时、原位研究生物大分子在固体界面的吸附是重要工具,前者同时检测石英晶体频率的变化(对应感应器上的重量)和吸附层的能量耗散值(对应感应器上薄膜的结构)的变化,后者只研究“干物质”的变化。本发明采用原位修饰的方法在QCM和SPR金芯片上成功修饰一层牛血清蛋白,制备得到牛血清蛋白传感器,为牛血清蛋白的界面吸附建立了一个平台。

    一种适用于高电解质环境的纸张强度增强方法

    公开(公告)号:CN109082937A

    公开(公告)日:2018-12-25

    申请号:CN201811053637.1

    申请日:2018-09-04

    Abstract: 本发明涉及一种应用低阳离子取代度木聚糖于高电解质造纸湿部以增强纸张强度的方法。为了解决环境污染问题,纸机白水封闭循环越来越厉害,电解质不断积累,含量越来越高,导致造纸湿部系统成分的复杂化,其结果就是明显降低了离子型化学品,比如阴离子淀粉和阳离子淀粉的应用效果。本发明采用微波辐射辅助合成低阳离子取代度(0.05~0.1.66)的木聚糖应用于高电解质造纸湿部以增强纸张强度,取代度在0.05-0.06的样品其增强效果(撕裂指数和抗张指数)比未改性的对照样好,也比更高取代度的阳离子木聚糖的效果要好。

    纳米纤维素水凝胶、气凝胶及其制备方法和应用

    公开(公告)号:CN108864446A

    公开(公告)日:2018-11-23

    申请号:CN201810810952.8

    申请日:2018-07-20

    Abstract: 本发明属于纤维素的应用技术领域,涉及一种纳米纤维素水凝胶、气凝胶及其制备方法和应用。本发明的纳米纤维素水凝胶的制备方法,包括以下步骤:(a)将纤维素原料进行前处理,获得纳米纤维素分散液;(b)纳米纤维素分散液与交联剂混合,得到复合分散液;(c)将复合分散液进行冻融处理,得到纳米纤维素水凝胶。本发明创新性地以冻融处理成功实现纳米纤维素的化学交联,产品具有低质、高强、高弹性、高孔隙率等特点,同时还具有条件温和、可操作性强等优势,为纳米纤维素凝胶的制备提供了实际可行的方法,具有工业化应用前景。

    一种纤维素氯化锌溶液制备纳米ZnO粉体的制备方法

    公开(公告)号:CN106006709B

    公开(公告)日:2018-05-08

    申请号:CN201610338239.9

    申请日:2016-05-18

    Abstract: 本发明公开一种纤维素氯化锌溶液制备纳米氧化锌(ZnO)粉体的制备方法,该制备方法是在低温下,以高浓氯化锌(ZnCl2)溶液为纤维素溶剂和纳米氧化锌的锌源,溶解在ZnCl2的纤维素为制备纳米ZnO的过程控制助剂,同时作为纳米ZnO团聚的高分子阻隔剂,通过胶体磨作为高效混合的反应器,制备尺寸均一无团聚的纳米ZnO。本发明利用溶解纤维素分子上大量羟基与锌离子作用,及胶体磨高效混合作用,有力地促进纳米ZnO粒子于低温、高浓度反应物下的生成,因此,制备方法的特点是反应物浓度高、操作简单、能耗低、易于工业化生产。

Patent Agency Ranking