Abstract:
본 발명은 고분자에 그래핀 또는 팽창흑연 나노플레이트를 첨가하여 그래핀 고분자 수지 복합체 및 상기 복합체를 이용하여 그래핀-고분자 수지 복합 섬유를 제조하는 방법에 관한 것으로서, 상기 그래핀-고분자 복합체 제조방법은 극성 유기 용매에 고분자 수지를 용해시킨 후, 그래핀을 첨가 교반하여 그래핀 분산 수지 용액을 얻는 단계; 상기 그래핀 분산 수지 용액을 초음파로 처리하는 초음파 처리단계; 상기 초음파 처리된 그래핀 분산 수지 용액을 물에 떨어뜨려 그래핀-고분자 수지 복합체 고형물을 생성시키는 단계; 및 상기 생성된 그래핀-고분자 수지 복합체 고형물을 분쇄하여 그래핀-고분자 수지 복합체 분말을 얻는 단계를 포함한다. 나아가, 상기 얻어진 그래핀-고분자 수지 복합체 분말을 이용하여 용융방사에 의해 그래핀-고분자 수지 복합 섬유를 얻을 수 있다.
Abstract:
Disclosed is a production method of a silicon-carbon nanocomposite powder for a negative electrode active material of a lithium secondary battery. The production method of the silicon-carbon nanocomposite powder, according to an embodiment of the present invention, comprises the following steps: a step for forming an inert atmosphere by supplying inert gas into a reaction chamber; a step for generating a RF plasma inside the reaction chamber; a step for inserting a silicon powder inside the reaction chamber with the RF plasma; a step for evaporating the silicon powder using the plasma; a step for pyrolyzing by flowing hydrocarbon gas into the chamber; and a step for condensing the carbon pyrolyzed from the hydrocarbon and the evaporated silicon. [Reference numerals] (S10) Step for forming inert atmosphere; (S20) Step for generating plasma; (S30) Step for inserting silicon powder; (S40) Step for evaporating the silicon powder; (S50) Step for pyrolyzing hydrocarbon; (S60) Step for condensing silicon-carbon nanocomposite powder
Abstract:
PURPOSE: A manufacturing method of graphene nanoribbon is provided to simply obtain graphene nanoribbon of nanosizes based on thermal shock without a separate oxidization or reduction process. CONSTITUTION: A manufacturing method of graphene nanoribbon includes the steps of: immerging carbon nanotubes in an ultra-low temperature tub (S110); and injecting the immersed carbon nanotubes in liquid water, and applying thermal shock to the carbon nanotubes (S120). The ultra-low temperature tube is formed by liquid nitrogen or liquid argon. [Reference numerals] (S100) Carbon nanotube; (S110) Immerse in an ultra-low temperature tub; (S120) Inject in room temperature or warm water; (S130) Filter; (S140) Dry; (S150) Graphene
Abstract:
본 발명은 금속표면에 탄소질을 코팅하는 방법에 있어서, 0.1N 이상의 불산(HF)수용액인 도금액이 저장된 도금조에 양극과 음극을 설치하는 단계와, 상기 양극에는 탄소물질을 연결하고, 상기 음극에는 탄소코팅층을 형성시키고자 하는 피도금물을 연결하여 상기 도금액에 침지하는 단계와, 상기 양극와 음극 사이에 직류전원을 사용하여 전원을 공급하는 단계를 포함하는 것을 특징으로 하는 금속표면에 탄소질을 코팅하는 방법에 관한 것이다. 본 발명의 금속표면에 탄소질을 코팅하는 방법은 기존의 도금장치를 사용하기 때문에 별도의 장치를 필요로 하지 않으므로 경제적이며, 금속표면의 미생물 친화성을 증가시킬 수 있으므로 금속표면에 다양한 기능성의 부여가 가능하다. 탄소질 코팅, 불산, 전기분해
Abstract:
PURPOSE: A method for manufacturing nitrogen-containing graphene is provided to control the functional group kinds of nitrogen and to simply manufacture graphene containing hetero elements such as the nitrogen. CONSTITUTION: A method for manufacturing nitrogen-containing graphene includes the following: natural graphite, carbon nano fiber powder, a sulfuric acid solution, and a nitric acid solution as starting materials are reacted to synthesize graphite oxide; the synthesized graphite oxide is exfoliated to manufacture graphene; and the graphene is plasma-treated under nitrogen atmosphere to substitute nitrogen functional groups in the lattice of the graphene. The exfoliation process is implemented based on a rapid pyrolyzing process or an ultrasonic wave-based process.
Abstract:
본 발명은 탄소계 내화물 조성물에 관한 것으로, 특히 산화물 골재, 카본 블랙, 섬유상 탄소 재료, 결합재, 및 산화방지제를 포함하여 종래 내화물과 비교하여 내스폴링성이 우수하고, 강도가 현저히 향상된 탄소계 내화물 조성물에 관한 것이다. 탄소계 내화물, 카본블랙, 섬유상 탄소 재료, 내스폴링성, 강도
Abstract:
PURPOSE: A molded body, a method for manufacturing the same, and a furnace wall protecting additive are provided to separate or eliminate powder, in which the diameter thereof is smaller than 1mm, containing plenty of sulfur components from the composite oxide powder of calcium and magnesium. CONSTITUTION: A molded body includes the composite oxide powder of calcium and magnesium, which is represented by CaO·MgO, and a binder. The sulfur content of the molded boy is 0.050 weight% or less. The diameter of the composite oxide powder is 1mm or more. The binder is one selected from a group including dextrin, molasse, and Pregelatinized starch. The molded boy includes 0.5-30 parts by weight of the binder, based on the 100.0 of the composite oxide powder. The composite oxide powder, in which the diameter thereof is smaller than 1mm, is eliminated.
Abstract:
PURPOSE: An additive for steel making and a manufacturing method thereof are provided to recycle waste quicklime and dolomite by preventing the chemical component change of additive for the steel manufacture due to hydration. CONSTITUTION: An additive for steel making comprises a base material and a binding agent. The base material is comprised of plasticized dolomite and plasticized quicklime powder. The mixed binding agent contains molasses 2~100wt. About refined starch which is alpha and dextrin which is alpha. The mixed binding agent of 1~50wt.% is mixed to the base material.
Abstract:
Provided is a post-treatment method of activated carbon is provided to manufacture activated carbon which reduces reduction widths of specific surface area and capacitance and increases cycle characteristics. An activated carbon post-treating method for manufacturing electrodes comprises the steps of: heating activated carbon to a temperature of 400 to 600 deg.C in a heating rate of 30 to 100 deg.C per minute to heat-treat the activated carbon; and holding the heat-treated activated carbon at the heat treatment temperature for 10 to 30 minutes. The activated carbon is obtained from a coal-, petroleum- or wood-based carbon raw material.
Abstract:
A fabrication method of a carbonaceous bipolar plate for PEMFC is provided to show high strength and high electrical conductivity and to be mass produced inexpensively. A fabrication method of a carbonaceous bipolar plate for PEMFC comprises the steps of: (S1) mixing carbonaceous binding materials and flaky graphite with particle size of 10 ~ 50 mum and charge density of .8 ~ 1.2 g/cm^2 imparting an functional group to the surface; (S2) pressurizing and molding the mixture; and (S3) heat-treating the molded materials at 300 ~ 800 °C.
Abstract translation:提供了一种用于PEMFC的碳质双极板的制造方法,以显示出高强度和高导电性并且可以廉价地批量生产。 用于PEMFC的碳质双极板的制造方法包括以下步骤:(S1)将碳质粘合材料和粒径为10〜50μm的片状石墨和电荷密度为0.8〜1.2g / cm 2的片状混合物赋予官能团 到表面; (S2)对混合物进行加压和模塑; 和(S3)在300〜800℃下对成型材料进行热处理。