Abstract:
The present invention relates to a positive electrode catalyst which contains a sea urchin-shaped α-MnO_2 in which platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), or palladium (Pd) nanoparticles are dipped, a method for manufacturing the same, and the lithium-air battery using the same. The method for manufacturing the positive electrode catalyst which contains the sea urchin-shaped α-MnO_2 according to the present invention includes: a first step in which sea urchin-shaped α-MnO_2 powder is formed by adding a first reaction activating agent to a manganese (Mn) precursor; a second step in which a mixture is manufactured by adding a second reaction activating agent used to dip one or more types of nanoparticle precursors which is selected form a group consisting of platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), and palladium (Pd), and a reducing agent to the α-MnO_2 powder formed in the first step; a third step in which the mixture manufactured in the second step is mixed with the α-MnO_2 powder; and a fourth step in which the mixture manufactured in the third step is reduced. According to the lithium-air battery which adopts the positive electrode catalyst which is manufactured by the manufacturing method of the present invention, an oxygen reaction is accelerated in a positive electrode of the lithium-air battery so that charge and discharge overvoltage can be lowered and energy efficiency can be improved.
Abstract:
PURPOSE: A method for preparing an anode active material is provided to easily prepare titanium oxide with a size of several nanometers in a nitrogen-doped porous carbon nanotube, and allow an appropriate control of the nitrogen content, the titanium oxide content, the pore size, the diameter of the carbon nanotube, and the size of titanium oxide. CONSTITUTION: A method for preparing an anode active material comprises the following steps. An electro-spinning solution is prepared by mixing a first solution in which a metal oxide precursor is dissolved, a second solution in which a polymer as a carbon nanotube precursor is dissolved, and an ionic liquid solution for nitrogen doping and forming of a porous structure (S10). The electro-spinning solution is electro-spun to prepare a composite material of metal oxide-nitrogen-porous carbon nanotube (S20). The composite material is thermally treated (S30). Further, an anode is formed by coating a current collector with a slurry in which the anode active material, a conducting agent, a binding agent, and a solvent are mixed. [Reference numerals] (AA) Start; (BB) End; (S10) Produce electro-spinning solution; (S20) Produce metal oxide-nitrogen-porous carbon nanofiber composite; (S30) Thermally treat composite
Abstract:
PURPOSE: A redox flow battery is provided to exclude a bipolar plate frame by integrating a manifold and a bipolar plate and to reduce a work time for laminating stacks. CONSTITUTION: A redox flow battery includes a pair of end plates which has an electrolyte inlet and an electrolyte outlet; a current collector inside the end plate; an end manifold which is placed inside the current collector, has a bipolar plate (110) mounted on a side corresponding to the current collector and an electrode inserted onto the opposite side; and an integrated composite electrode cell which is placed between the end manifolds and includes a first manifold (121) in which a first electrode is inserted, a second manifold (122) in which a second electrode is inserted, and the bipolar plate placed between the first and second manifolds.
Abstract:
본 발명은 유로 눌림을 방지하여 전해액 흐름을 원활히 하기 위한 유로 덮개 및 이를 포함하는 매니폴드와 레독스 흐름전지에 관한 것으로, 가스켓 눌림에 의한 유로 상의 전해액 막힘 또는 가스켓 들림에 의한 전해액 섞임을 미연에 방지하여 충방전 효율 및 에너지 효율을 향상시킬 수 있다.
Abstract:
The present invention relates to a redox flow battery, and more particularly, provides a redox flow battery including: a stack in which positive electrode cells, separators, and negative electrode cells are repeatedly stacked from bipolar plates, and a bipolar plate, a collector, and an end plate are sequentially disposed on an outer side of each of the outermost positive electrode cell and the outermost negative electrode cell; a positive electrode electrolyte tank that stores positive electrode electrolyte to be supplied to the positive electrode cells; and a negative electrode electrolyte tank that stores negative electrode electrolyte to be supplied to the negative electrode cells. The positive and negative electrode electrolyte tanks include: an outflow pipe arrangement for transferring electrolyte to the stack; an inflow pipe arrangement for receiving the electrolyte from the stack; and an electrolyte injection hole for injecting electrolyte, introduced into the positive and negative electrode electrolyte tanks, to the inside of the redox flow battery. Thus, electrolyte after redox is uniformly injected into an electrolyte tank is thus efficiently mixed with electrolyte remaining the electrolyte tank and is then returned to a stack, to prevent charging capacity and energy efficiency from being reduced by overvoltage, thereby improving a battery performance.
Abstract:
본 발명은 카바이드 유도 탄소 기반 음극 활물질 제조방법에 관한 것으로, 카바이드 유도 탄소를 제조하는 단계; 및 상기 카바이드 유도 탄소의 기공을 확장하는 단계를 포함한다. 이때, 기공을 확장하는 단계는 제조된 카바이드 유도 탄소를 공기 중에서 가열하는 활성화 공정으로 수행되는 것이 좋다. 본 발명은, 제조 단계에서 활성화 공정을 부가함으로써, 카바이드 유도 탄소 내에 형성된 기공을 확장할 수 있는 효과가 있다. 또한, 기공이 확장된 카바이드 유도 탄소를 음극활물질로 적용함으로써 충방전 효율이 향상된 리튬 이차전지를 제조할 수 있는 효과가 있다.
Abstract:
The present invention relates to a redox flow battery and an operating method, and according to the present invention, a catholyte tank and an anolyte tank are located higher than the position on which a stack is placed; a part of an electrolyte inside the stack is collected to be stored in an electrolyte tank, thereby preventing a countercurrent and self-discharge of the electrolyte during non-operation; and especially, nitrogen is flowed into the redox flow battery to prevent a drying phenomenon of a separation membrane induced by electrolyte insufficiency, thereby obtaining the effect of preventing a decrease in durability of the redox flow battery.