Abstract:
무변압기형 계통연계 태양광 발전 시스템의 전력변환장치에 대한 것으로, 전력변환장치를 구성하는 DC-DC 컨버터와 DC-AC 컨버터 사이의 DC 링크 전압을 태양전지어레이로부터 발생되는 출력 전력 정보를 이용하여 현재 발생되는 출력에 해당하는 전력이 계통으로 출력되도록 제어하는 무변압기 계통연계 태양광 발전 시스템의 전력변환장치에 대한 것이다. 본 발명에 따른 무변압기형 계통연계 태양광 발전 시스템의 전력변환장치는 태양광을 직류전력으로 전환하는 태양전지어레이가 최대 출력점으로 운전하도록 최대 출력점 제어를 수행하고, 태양전지어레이에서 발생된 직류전압을 승압 또는 강압하여 출력하는 DC-DC 컨버터; 상기 DC-DC 컨버터에서 출력된 전압을 상용 주파수의 교류전력으로 변환하여 배전 계통으로 출력하는 DC-AC 컨버터;를 포함하되, 상기 DC-AC 컨버터는 배전계통전압정보와 배전계통전류정보를 이용하여 상기 DC-AC 컨버터의 출력전류를 제어하기 위한 제어값을 출력하는 제어값 출력 모듈과, 상기 태양전지어레이의 출력전력과 배전계통전압정보를 이용하여 전류기준값을 출력하는 전류기준값 출력 모듈과, 상기 DC-AC 컨버터에 입력되는 전압정보 및 미리 설정된 운전범위정보를 이용하여 보상전류기준값을 계산하는 DC전압제한 모듈과, 상기 전류기준값과 보상전류기준값 및 상기 제어값 출력 모듈의 제어값을 이용하여 DC-AC 컨버터의 출력전력을 제어하는 전류제어 모듈을 포함한다. 본 발명에 따른 무변압기형 계통연계 태양광 발전 시스템의 전력변환장치는 전류의 고조파를 저감시키고, 외부 환경 조건의 변화에 의해서 계통 출력이 급격하게 변화하지 않으며, 시스템의 동작 안정성을 확보할 수 있는 효과가 있다. 태양전지어레이, 전력변환장치, 무변압기형, DC/AC 컨버터
Abstract:
본 발명은 전력계통에서의 FFT를 이용한 위상추종 시스템 및 그 방법을 제공하기 위한 것으로, 입력전원을 필터링하여 노이즈 성분을 제거하는 LPF와; 상기 LPF의 출력에서 영전압을 검출하여 사각형 파형을 얻는 영전압 검출부와; 상기 영전압 검출부의 사각형 파형을 전달받아 FFT를 적용하여 기본파를 추출하여 계통전원 전압의 위상을 출력하는 마이크로 프로세서;를 포함하여 구성함으로서, FFT를 이용하여 위상추종을 수행하여 다른 부가적인 튜닝과정 없이 안정적이면서 직접적인 위상값을 획득할 수 있게 되는 것이다. FFT, 위상추종 시스템 및 그 방법
Abstract:
본 발명은 아크 용접 전원장치를 이용한 용접 진단 방법에 대한 것으로서, 더욱 상세하게는 용접 전원장치 내의 전압센서, 전류센서, 제어기를 이용하여 용접상태를 모니터링 함으로써, 전압 및 전류의 변화 원인을 손쉽게 파악할 수 있고, 추가적인 진단장치가 필요치 아니하여 제품의 생산비용을 획기적으로 절감할 수 있는 아크 용접 전원장치를 이용한 용접 진단 방법에 관한 것이다. 이를 위해, 본 발명은, 제어기, 전압센서, 전류센서를 포함하여 구성되는 아크 용접 전원장치를 이용한 용접 진단 방법에 있어서, (a) 상기 제어기를 이용하여 전압 및 전류 인가값을 설정하는 단계; (b) 아크 용접 수행을 위해 설정된 상기 전압 및 전류 인가값에 따라 용접 전원을 인가하는 단계; (c) 상기 전압센서 및 전류센서를 이용하여 아크전압 및 용접전류를 측정하는 단계; 및 (d) 상기 전압, 전류 인가값과 상기 제어기를 통해 수집되는 아크전압 및 용접전류의 측정값을 비교하여 측정값 변화의 원인을 파악하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 아크 용접 전원장치를 이용한 용접 진단 방법을 제공한다. 아크 용접, 모니터링, 품질, 아크전압, 용접전류
Abstract:
A welding diagnosis method using an arc welding power unit is provided to monitor a welding state using a voltage sensor, a current sensor and a controller of the arc welding power unit, thereby enabling a user to easily recognize the causes of the change in voltage and current. An arc welding power unit(100) comprises a controller(102), a voltage sensor(106) and a current sensor(108). A welding diagnosis method using the arc welding power unit comprises the following steps of: setting voltage and current application values using the controller; applying the welding power according to the voltage and current application values; measuring the arc voltage and the arc current using the voltage sensor and the current sensor; and comparing the measured values of arc voltage and the arc current collected through the controller with the voltage and current application values and grasping the cause of the change in the voltage and current.
Abstract:
A high frequency transformer, a manufacturing method thereof, and a DC-DC converter using the same are provided to minimize the damage of a coil by winding the coil around a bobbin with a n edge-wise method. A high frequency transformer includes a core(10), a bobbin(20), and a coil(70a,70b). The bobbin is positioned in the center leg of the coil. The bobbin has n insulating barriers(50). The bobbin is divided into (n+1) sections by the n insulating barriers. A groove is formed in each insulating barrier. The groove forms an acute angle with a surface vertical to the axial direction of the bobbin in a predetermined region of the insulating barrier. The coil is wound around the bobbin with an edge-wise method. The width of the coil is vertical to the axial direction of the bobbin.
Abstract:
A method of simulating a three-phase voltage and a three-phase current from one-phase power and an apparatus for controlling a power converter in a one-phase distribution generation system are provided to overcome a limitation of a frequency response of an alternating current control system and a difficulty in independent control of effective power or reactive power. A method of simulating a three-phase voltage(92) and a three-phase current(93) from one-phase power includes the steps of: (a) sampling a current(91) outputted from the one-phase power and a voltage(90) of a power system electrically connected to the one-phase power; and (b) extracting three-phase voltage component values and current component values based on sampling voltage values and current values sampled in the step(a). The step(b) includes the steps of: (b-1) storing the sampling voltage values and current values detected in the step (a) for more than one cycle of the power-based voltage; and (b-2) selecting voltage values and current values earlier than and later than the voltage by 1/3 cycle from the stored voltage values and current values. Two look-up tables(97,98) for the current and the voltage are applied so as to simulate three phases from one-phase input values.
Abstract:
본 발명은 계통연계형 태양광 발전시스템에 관한 것으로서, 전력미거래 수용가에 태양광 발전시스템을 설치하는 경우에 적정 설치용량을 산정함으로써, 태양광 발전시스템이 기존 상용전력계통과 연계 구성하여 자가용 수용가에 원활한 전력을 공급할 수 있는 태양광 발전시스템의 적정 설치용량을 산정하는데 그 목적이 있다. 이러한 특징적인 목적을 달성하기 위한 본 발명은, (a) 수용가의 전체 전력사용량을 확인하는 단계; (b) 전체 전력사용량에 따른 최소 및 최대부하를 비교·분석하는 단계; (c) 태양광 발전전력보다 큰 값인지를 판단하는 단계; (d) 상기 제 (c) 단계의 판단결과, 상기 최소부하가 상기 태양광 발전전력보다 큰 값인 경우에 적정 설치용량을 선정하는 단계; 및 (e) 상기 제 (c) 단계의 판단결과, 상기 최소부하가 상기 태양광 발전전력보다 작은 값인 경우에 상기 태양광 발전전력이 역송전되지 않도록 방지하는 단계; 로 구성된다. 태양전지, 태양광 발전시스템, 역송전, 상용전력계통, 적정 설치용량
Abstract:
A method for computing an optimal installation capacity of a solar cell generation system is provided to enable the solar cell generation system to supply electric power to a self-generation house smoothly in connection with a usual commercial power system by computing the optimal installation capacity when the solar cell generation system is installed to the self-generation house. Total electric power usage of the self-generation house is checked(S2). Minimum and maximum load according to the total electric power usage is compared and analyzed(S6). It is checked whether or not the minimum load is bigger than the electric power generated from the solar cell generation system(S10). The optimal installation capacity is computed when the minimum load is bigger than the electric power generated from the generation system(S12). Inverse power transmission of the electric power generated from the solar cell generation system is prevented when the minimum load is smaller than the electric power generated from the generation system(S14).
Abstract:
A system for optimizing a solar cell generating system and a control method thereof are provided to effectively install and manage the solar cell generating system by determining an installation scheme of the solar cell generating system according to a condition that a power supply company prepares or do not prepare a power line. A system for optimizing a solar cell generating system includes an installation type selecting unit(100), a relay capacity calculating unit(200), a stand-alone capacity calculating unit(300), an orientation angle calculator unit(400), a database unit(500), and a controlling unit(600). The installation type selecting unit determines an installation scheme from a stand-alone type and a relay type based on an existence of a power line from a power supply company. The relay capacity calculating unit calculates capacities of the solar cell generating system and a solar cell module. The stand-alone capacity calculating unit calculates an overall load applied on a coverage of the solar cell generating system. The orientation angle calculator unit calculates a maximum output value of the solar cell generating system according to the calculated result from the calculating units.
Abstract:
A hybrid distributed generation system and a control method therefor are provided to stably supply power to an electrical apparatus by separating a diesel generation system from a regeneration energy system. A first distributed power portion(110) converts DC power from a wind generator(wt) and a solar cell(pv) to a maximum power. An inverter unit(120) converts the DC power which is supplied from a DC common line from the first distributed power portion, to an AC portion. A second distributed power portion(130) includes a diesel engine and a driving synchronous generator. A unified controller(140) is coupled with the first and second distributed power portions and the inverter unit, and controls the components. The AC power from the inverter unit and the output power from the second distributed power portion are supplied to an AC common line and delivered to a load(L).