Abstract:
The present invention relates to a preparing method of a SAPO-34 molecular sieve containing titanium, a SAPO-34 molecular sieve containing titanium prepared by the method and a preparation method of light olefin from methanol using the SAPO-34 molecular sieve. More specifically, the method of the present invention, wherein a titanium precursor is firstly added and then the phosphoric acid is added unlike an existing method which means a synthetic gel is formed after the titanium precursor is added, and the SAPO-34 molecular sieve manufactured by the method has the same structure of porous chabazite mineral and forms Ti well in a molecular sieve whose catalyst activity is relatively large. In a case of using the SAPO-34 molecular sieve as a catalyst for an MTO reaction which manufactures light olefin from oxygenate compounds like methanol, the SAPO-34 molecular sieve is allowed to improve catalyst activity and catalyst life compared with a Ti-SAPO-34 molecular sieve manufactured by the SAPO-34 and an existing method and to increase yield and selection degree of light olefin.
Abstract:
본 발명은 실리카에 제1금속산화물 및 제2금속산화물이 담지된 촉매에 있어서, 상기 제1금속산화물은 탄탈륨산화물이고, 상기 제2금속산화물은 세륨산화물, 니켈산화물, 지르코늄산화물 및 망간산화물로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 1,3-부타디엔 제조용 촉매 및 이를 이용한 1,3-부타디엔의 제조방법에 관한 것으로, 구체적으로 본 발명의 촉매는 절한 크기와 강도를 갖는 성형실리카 담체를 선택함으로써 실제 고정층 반응기에 적용할 수 있고, 제1금속산화물로 탄탈륨산화물을, 제2금속산화물로 세륨산화물, 니켈산화물, 지르코늄산화물, 망간산화물을 함께 함침시킴으로써, 반응시간이 경과함에 따라 1,3-부타디엔의 선택도의 저하를 최소화함으로써 활성저하 현상이 억제되어 촉매의 수명이 기존 실리카계 촉매에 � ��하여 월등히 향상되는 효과가 있으므로, 1,3-부타디엔의 제조에 유용하게 사용될 수 있다.
Abstract:
The present invention relates to a zeolite catalyst which is a nano-sized crystal in which zinc and lanthanum are dipped and a method for producing same. More specifically, the zeolite catalyst includes a first particle having a size of 10 to 100 nm and a second particle having a size of 1 to 10 μm. Each of the second particles includes the first particles. The zeolite catalyst comprises: zeolite having a silica and alumina mole ratio (SiO2/Al2O3) of 50 to 80; and zinc and lanthanum that are dipped therein. The zeolite catalyst includes zinc and lantan that are co-precipitated therein as active ingredients of the catalyst in order to increase the selectivity of an aromatic compound, especially BTX. The selectivity of an aromatic compound and BTX can be remarkably increased when the aromatic compound is produced from ethanol using a fixed layer catalyst reactor by means of the co-precipitation and appropriate acid site of nano-sized crystal particles, zinc, and lanthanum.
Abstract translation:本发明涉及一种沸石催化剂,其是浸渍有锌和镧的纳米尺寸的晶体及其制造方法。 更具体地说,沸石催化剂包括尺寸为10-100nm的第一颗粒和尺寸为1至10μm的第二颗粒。 每个第二颗粒包括第一颗粒。 沸石催化剂包括:二氧化硅和氧化铝摩尔比(SiO 2 / Al 2 O 3)为50〜80的沸石; 以及浸入其中的锌和镧。 沸石催化剂包括作为催化剂的活性成分共沉淀的锌和蓝丹,以提高芳族化合物,特别是BTX的选择性。 当使用固定层催化剂反应器通过共沉淀和纳米尺寸的结晶颗粒,锌和镧的适当酸性位点从乙醇制备芳族化合物时,芳族化合物和BTX的选择性可以显着增加。
Abstract:
The present invention relates to a regularly ordered mesoporous carbon-based catalyst for producing oxygenated carbon compounds from synthetic gas and a method for producing oxygenated carbon compounds using the same. Specifically, the catalyst of the present invention uses ordered mesoporous carbon (OMC) having a high surface area and even and regular mesoporous as a carrier while the structure of the carrier is specified as a 2-D tubular type, a 3-D rod type or a 3-D tubular type, in order to optimize the side and spread extent of the particles of active metals for increasing the selectivity and production speed of oxygenated carbon compounds. The regularly ordered mesoporous carbon carrier can be further produced from a carbohydrate aqueous solution such as sucrose or xylose to be eco-friendly and economical, so that the carrier can be useful in the production of oxygenated carbon compounds.