Abstract:
Orthodontic articles and polymerizable resin compositions are described. The orthodontic article comprises a cured composition comprising the reaction product of free-radically polymerizable resin comprising 30 to 70 wt. %, inclusive, of at least one urethane component, and 25 to 70 wt. %, inclusive, of reactive diluent(s) comprising at least one monofunctional (meth)acrylate monomer. The polymerizable resin comprises no greater than 35 wt. % of reactive diluent(s) having a high affinity for water. Reactive diluent(s) such as monofunctional (meth)acrylate monomers having a high affinity for water have low log P values. In one embodiment, the polymerizable resin comprises at least one acidic monomer.
Abstract:
A quantum dot film article includes a first barrier film, a second barrier film, and a quantum dot layer separating the first barrier from the second barrier film. The quantum dot layer includes quantum dots dispersed in a polymer material. The polymer material includes a methacrylate polymer, an epoxy polymer and a photoinitiator.
Abstract:
A quantum dot film article including a first barrier layer, a second barrier layer; and a quantum dot layer between the first barrier layer and the second barrier layer. The quantum dot layer includes quantum dots dispersed in a matrix including a cured adhesive composition. The adhesive composition includes an epoxide and a curing agent including: (a) a compound of Formula I: wherein A is a monocyclic or a polycyclic alkylene group, or a monocyclic or a polycyclic heteroalkylene group, and m and n are integers each independently selected from 0 to 5; and (b) a polyether amine compound including at least one of primary and secondary amino groups attached to a polyether backbone. The adhesive composition further includes a radiation curable methacrylate compound.
Abstract:
A quantum dot film article includes a first barrier layer; a second barrier layer; and a quantum dot layer between the first barrier layer and the second barrier layer. The quantum dot layer has quantum dots dispersed in a matrix including a cured adhesive composition, wherein the adhesive composition includes: an epoxide; an amino-functional compound of Formula I: wherein A is a monocyclic or a polycyclic alkylene group, or a monocyclic or a polycyclic heteroalkylene group, and m and n are integers each independently selected from 0 to 5; and a radiation curable methacrylate compound.
Abstract:
The present disclosure describes a display system including a liquid crystal display panel and a light source emitting light capable of emitting light. A nonwoven diffuser element is disposed between the light source and the liquid crystal display panel. The polymeric nonwoven diffuser is non-orientated and has a fiber diameter of less than 50 micrometers, a fiber aspect ratio of length/diameter of greater than 5 and a basis weight in a range from 10 to 80 grams/meter2.
Abstract:
Presently described are microstructured films, such as brightness enhancing films, having a microstructured surface. The microstructured surface comprises the reaction product of a polymerizable composition comprising at least 20 wt-% of inorganic nanoparticles and a non-aromatic multi-(meth)acrylate monomer comprising at least three contiguous alkylene oxide repeat units. The multi-(meth)acrylate monomer typically comprises two or three (meth)acrylate groups. The alkylene oxide repeat units have the formula —[O-L]- wherein each L is independently a C2-C6 alkylene. Also described is a polymerizable resin composition comprising at least 20 wt-% of inorganic nanoparticles having a refractive index of at least 1.68 and a non-aromatic multi-(meth)acrylate monomer comprising at least three contiguous alkylene oxide repeat units.
Abstract:
Presently described are microstructured films, such as brightness enhancing films, having a microstructured surface. The microstructured surface comprises the reaction product of a polymerizable composition comprising at least 20 wt-% of inorganic nanoparticles and a non-aromatic multi-(meth)acrylate monomer comprising at least three contiguous alkylene oxide repeat units. The multi-(meth)acrylate monomer typically comprises two or three (meth)acrylate groups. The alkylene oxide repeat units have the formula —[O-L]- wherein each L is independently a C2-C6 alkylene. Also described is a polymerizable resin composition comprising at least 20 wt-% of inorganic nanoparticles having a refractive index of at least 1.68 and a non-aromatic multi-(meth)acrylate monomer comprising at least three contiguous alkylene oxide repeat units.