Abstract:
The provided articles, assemblies, and methods use a non-woven fibrous web (50) having one or more layers (60) that are densified in situ to provide a layer that is densified relative to one or more adjacent layers, collectively within a unitary non-woven construction. The non-woven web (50) can be made from fibers having a composition and/or structure that resist shrinkage induced by polymer crystallization when subjected to high temperatures. Advantageously, the provided non-woven webs (50) can be molded to form a three-dimensional shaped article that displays dimensional stability.
Abstract:
The present disclosure provides a sample collection device. The sample collection device includes a housing defining a fluid channel from a first portion to a second portion. The sample collection device further includes a porous sample collection media disposed within the housing and in fluid communication with the fluid channel. The sample collection device further includes a fluid inlet port disposed in fluid communication with the porous sample collection media. The fluid inlet port is configured to direct a test fluid onto the porous sample collection media. The sample collection device further includes an assay configured to receive a fluid that was incident on the porous sample collection media.
Abstract:
A clinical garment for patient warming including a front body panel having a first edge, an opposite second edge, an insulated sheet comprising an insulated layer positioned between an outer layer a film layer, a permeable layer adjacent to the film layer of the insulated sheet, a blanket section defined by a lower portion of the insulated sheet sealed to a lower portion of the permeable along a top edge, a bottom edge, and opposite first and second side edges of the blanket section, and at least one inlet port extending into the blanket section. The garment further includes a first back panel secured to at least a portion of the first edge of the front body panel and a second back panel secured to at least a portion of the second edge of the front body panel.
Abstract:
A thermoplastic core-sheath fiber comprises: a polymer fiber core having a coextensive sheath layer disposed thereon, and an electrostatic charge enhancing additive. The sheath layer may comprise poly(4-methyl-1-pentene) and the fiber core and the sheath layer have different compositions. At least one of the fiber core or the sheath layer comprises an electret charge. A nonwoven fibrous web comprising the core-sheath fibers and a respirator including the nonwoven fibrous web are also disclosed.
Abstract:
A single-layer spunbonded air-filtration web including meltspun autogenously bonded electret fibers with an Actual Fiber Diameter of from 3.0 microns to 9.0 microns. The air-filtration web exhibits a mean flow pore size of from 8.0 to 19 microns and exhibits a ratio of mean flow pore size to pore size range of from 0.55 to 2.5. Also disclosed are methods of making such webs, and methods of using such webs to perform air filtration.
Abstract:
High loft nonwoven webs including a population of substantially continuous mono-component melt-spun filaments, wherein the nonwoven web exhibits a Solidity of less than eight percent with a weight normalized cross direction (CD) tensile greater than 10 Newtons per 100 grams per square meter of web weight (10 N/100 gsm), and wherein the nonwoven web is substantially free of gap-formed fibers, crimped fibers, staple fibers, and bi-component fibers. High loft spun-bond nonwoven webs can be advantageously used in filtration articles. Methods of making high loft spun-bond nonwoven webs, and filtration articles including high loft spun-bond webs made according to the methods, are also disclosed.
Abstract:
A functionalized nonwoven substrate and methods for preparing the same are described. The functionalized substrates are useful in selectively filtering and removing biological materials, such as biocontaminates, from biological samples.
Abstract:
A protected sample collection media for use in a sample collection device includes a piece of porous sample collection media having a first major side and an opposing second major side; and a protective sheath fully covering the first major side and the second major side. The protective sheath has a first portion and a second portion. The first portion is removable without removing the second portion. The second portion forms a tab constructed to be gripped by hand. The protected sample collection media may be part of a system including a sample collection device. The system may be provided as a kit including instructions for use of the kit.
Abstract:
Provided are acoustic articles having a porous layer (102,104,106) placed in contact with a heterogeneous filler comprising porous carbon and having an average surface area of from 0.1 m2/g to 10,000 m2/g. The acoustic articles can have a flow resistance of from 10 MKS Rayls to 5000 MKS Rayls. Optionally, the porous layer includes a non-woven fibrous layer or a perforated film having a plurality of apertures with an average narrowest diameter of from 30 micrometers to 5000 micrometers. The heterogeneous filler can enhance low frequency performance without significantly compromising high frequency performance, thickness or weight.
Abstract:
The present disclosure relates to sample collection devices and sample collection and testing devices. The devices described herein includes a housing defining a fluid channel from a first portion to a second portion. The devices further include a porous sample collection media disposed within the housing and in fluid communication with the fluid channel. The devices further include a fluid inlet port disposed in fluid communication with the porous sample collection media. The fluid inlet port is configured to direct a test fluid onto the porous sample collection media. The sample collection device further includes an assay configured to receive a fluid that was incident on the porous sample collection media (and eluent) and test that eluent for the presence (or absence) of a pathogen or virus.