Abstract:
A pleated filter is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition. Rows of pleats are formed in the nonwoven web, and the pleated web is cut to a desired size and shape to provide a filter element containing a self-supporting porous monocomponent monolayer matrix of fibers bonded to one another at at least some points of fiber intersection and having an average initial submicron efficiency of at least 15 % at a 1.52 meters/sec face velocity. The filter element is deformation resistant without requiring stiffening layers, bicomponent fibers or other reinforcing measures in the filter media layer.
Abstract:
Spunbonded electret webs comprising polylactic acid fibers, in which at least some of the polylactic acid fibers are meltspun, drawn, charged fibers that include charging additive; and, methods of making such fibers and webs.
Abstract:
Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing
Abstract:
A pleated filter is made from a monocomponent monolayer nonwoven web of continuous monocomponent meltspun partially crystalline and partially amorphous oriented fibers of the same polymeric composition that are bonded to form a coherent and handleable web having a Gurley Stiffness of at least 100 mg and which further may be softened while retaining orientation and fiber structure. Rows of pleats are formed in the nonwoven web, and the web is cut to a desired size and shape to provide a pleated filter element containing a self-supporting porous monocomponent monolayer matrix of fibers bonded to one another at at least some points of fiber intersection and having an average initial submicron efficiency of at least 15 % at a 1.52 meters/sec face velocity. The filter element is deformation resistant without requiring stiffening layers, bicomponent fibers, adhesive or other reinforcement in the filter media layer.
Abstract:
A nonwoven fibrous web comprising a matrix of continuous meltspun fibers bonded to a coherent self-sustaining form, and separately prepared microfibers dispersed among the meltspun fibers. The microfibers may have median diameters less than one or two micrometers. A method for preparing such a nonwoven fibrous web comprises establishing a stream of continuous oriented meltspun fibers having a longitudinal axis, establishing a stream of meltblown microfibers that exit a meltblowing die at a point near the stream of meltspun fibers, the meltblown stream being aimed to merge with the meltspun stream and having a longitudinal axis that forms an angle of between 0 and 90 degrees to the longitudinal axis of the meltspun stream, capturing the meltblown fibers in the stream of meltspun fibers, and collecting the merged stream as a web on a collector spaced near the intersection point of the meltspun and meltblown streams.
Abstract:
Dimensionally stable nonwoven fibrous webs include a plurality of fibers formed from one or more thermoplastic polyesters and an antishrink additive, preferably in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 12% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. The webs may be used as wipes.