Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films that include embedded nanostructures are disclosed. The articles include a sacrificial template layer having a first surface and a second surface having a structured surface opposite the first surface and a thermally stable backfill layer applied to the second surface of the sacrificial template layer. The thermally stable backfill layer has a structured surface conforming to the structured surface of the sacrificial template layer and the sacrificial template layer comprises inorganic nanomaterials and sacrificial material. The sacrificial material in the sacrificial template layer is capable of being cleanly baked out while leaving a densified layer of inorganic nanomaterials on the structured surface of the thermally stable backfill layer.
Abstract:
Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill layer is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.
Abstract:
Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill layer is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.
Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films that include antireflective structures are disclosed.
Abstract:
Transfer films comprising a carrier film, a sacrificial template layer deposed on the carrier film and comprising reentrant forming template features, and a thermally stable backfill layer having a first surface conforming to the reentrant forming template features and forming reentrant features and an opposing planar second surface; and methods of making transfer films are disclosed.
Abstract:
The present disclosure relates to micro-optical assemblies containing at least one optical element adhered to a receptor substrate, e.g. a transparent receptor substrate, the receptor substrate contains at least one graphics layer. The micro-optical assemblies include both functional micro-optical structures that can alter, for example, incident light, and a graphic layer, which includes at least one graphic, e.g. a graphic design, which may include color, patterns, imagery, indicia and the like. The combination of the micro-optical elements with the graphic of the graphics layer can provide unique light altering assemblies that have graphic designs that may be functional, e.g. to display a message, and/or have aesthetic value. The micro-optical assemblies of the present disclosure are useful in a variety of applications which include, but are not limited to, display and graphics applications and architectural glass applications. The present disclosure also provides a method of making the micro-optical assemblies of the present disclosure.
Abstract:
Inorganic multilayer lamination transfer films, methods of forming these lamination transfer films, and methods of using these lamination transfer films. These inorganic multilayer lamination transfer films can have alternating layers including inorganic nanoparticles, sacrificial materials, and optionally inorganic precursors that can be densified to form an inorganic optical stack. Receptor substrates, such as glass or metal, are laminated to the multilayer lamination transfer films.
Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films (100) may include a plurality of co-extensive electrical protolayers (22, 23, 24) forming an electrical protolayer stack (20), at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films that include antireflective structures are disclosed.