Abstract:
Golf balls comprising a multi-layer core and a cover are disclosed. The multi-layer core comprises at least one intermediate core layer formed from a metallic, composite, or inorganic/organic hybrid composition.
Abstract:
Methods for making golf balls and golf ball components using three-dimensional (3D) additive manufacturing systems are provided. The golf ball includes at least one three-dimensional piece. Preferably, a continuous liquid interface printing method is used to make the three-dimensional structure. Ultraviolet (UV)-light polymerizable materials are used in the method. The method may be used to make single-piece or multi-piece balls. For example, the ball may include an inner core produced by the liquid interface printing method. An outer core layer may be disposed about the inner core, and a cover comprising inner and outer cover layers may encapsulate the core assembly to form the finished golf ball. The outer core and cover layers may be made using conventional molding technologies or methods of this invention.
Abstract:
Multi-layer golf balls having a hard, high compression center, a relatively soft intermediate layer, and a stiff outer cover layer, are provided. The outer surface hardness of the intermediate layer is less than that of both the center and the outer cover layer.
Abstract:
Multi-layer golf balls having a relatively hard outer core surrounding a relatively soft, low compression inner core are provided. The inner core generally has a compression of less than 70. The outer core generally has a Shore C hardness of 80 or greater. A cover, which can be a single-, dual-, or multi-layer cover, is provided to surround the outer core. A moisture barrier layer is optionally provided between the outer core and the cover. The moisture vapor transmission rate of the moisture barrier layer is preferably less than the moisture vapor transmission rate of the cover.
Abstract:
Golf balls comprising a multi-layer core and a cover are disclosed. The multi-layer core comprises at least one intermediate core layer formed from a metallic, composite, or inorganic/organic hybrid composition.
Abstract:
A device and method for marking a spherical golf ball component, comprising: at least one rotation support; at least one spherical golf ball component having a center and an outer surface; wherein each spherical golf ball component is mountable on the rotation support such that the spherical golf ball component is rotatable in any direction about its center; and at least one marking arm that marks the outer surface while the spherical golf ball component is rotating. At least one marking arm may be motionless while marking the spherical golf ball component, or the marking arm may be motionless at least temporarily while marking the spherical golf ball component, or the marking arm may be movable to mark the outer surface.
Abstract:
The present invention is directed to multi-layer golf balls including a layer formed from a composition comprising a relatively soft or low modulus HNP and a layer formed from a composition comprising a relatively hard or high modulus HNP.
Abstract:
The present invention is directed to multi-layer golf balls including a layer formed from a relatively soft or low modulus HNP composition and a layer formed from a relatively hard or high modulus HNP composition. Optionally, the soft (or low modulus) HNP composition and/or the hard (or high modulus) HNP composition is plasticized or is replaced with a different plasticized acid copolymer composition.
Abstract:
The present invention is directed to golf balls consisting of a multi-layer core and a cover. The multi-layer core consists of a center and an outer core layer that are both soft relative to a hard rubber intermediate core layer. The outer core layer is preferably thin relative to the center and the outer core layer. The multi-layer core includes at least one layer formed from a relatively soft HNP composition and at least one layer formed from a relatively hard HNP composition.
Abstract:
The present invention is directed to golf balls consisting of a dual-layer core and a cover. The core consists of a center having a center hardness of 50 Shore C or greater and formed from a low modulus HNP composition, and an outer core layer having a surface hardness of 75 Shore C or greater and formed from a high modulus HNP composition. Low modulus HNP compositions of the present invention have a modulus of from 1,000 psi to 50,000 psi. High modulus HNP compositions of the present invention have a modulus of from 25,000 psi to 150,000 psi. The modulus of the highly neutralized copolymer of the low modulus HNP is at least 10% less than the modulus of the highly neutralized copolymer of the high modulus HNP composition. The cover consists of an inner cover layer formed from a thermoplastic composition and an outer cover layer formed from a polyurethane or polyurea composition.