Abstract:
The present invention relates to a method for optimizing performance of a multi-span optical fiber network. Each span has an associated optical transmission fiber connected to an associated optical amplifier. Gain and output power of the associated optical amplifier are respectively controlled independently. An amplifier noise figure respectively depends on the gain of the associated optical amplifier, with each associated optical amplifier further connected to launch optical signals into a remainder of a corresponding optical transmission line. The method includes the steps of for each span, computing the amplifier noise figure and a non-linear noise generated in the span based on information about the span and using the computed amplifier noise figure and the computed non-linear noise to compute an optimum launch power, and optimizing performance of the multi-span optical fiber network based on the computed optimum launch powers of all spans.
Abstract:
A method for establishing bidirectional communication links includes: supplying, to at least two optical transceiver modules at each side of at least two optical paths, a multiplexed optical CW signal comprising at least two optical CW signals having the same differing wavelengths, and modulating the multiplexed optical CW signal according to modulation signals; creating, at each side of the optical paths, at least two first and second optical transmit signals by optically filtering the modulated optical signals so that only a single wavelength remains, and routing pairs of a first and second optical transmit signal to the optical paths, wherein the optical transmit signals of each pair have differing wavelengths and wherein the optical transmit signals transmitted in the same direction over the same optical paths have differing wavelengths; receiving each optical transmit signals at a dedicated optical transceiver module by mixing it with the multiplexed optical CW signal.
Abstract:
A method for establishing bidirectional communication links includes: supplying, to at least two optical transceiver modules at each side of at least two optical paths, a multiplexed optical CW signal comprising at least two optical CW signals having the same differing wavelengths, and modulating the multiplexed optical CW signal according to modulation signals; creating, at each side of the optical paths, at least two first and second optical transmit signals by optically filtering the modulated optical signals so that only a single wavelength remains, and routing pairs of a first and second optical transmit signal to the optical paths, wherein the optical transmit signals of each pair have differing wavelengths and wherein the optical transmit signals transmitted in the same direction over the same optical paths have differing wavelengths; receiving each optical transmit signals at a dedicated optical transceiver module by mixing it with the multiplexed optical CW signal.
Abstract:
A method and apparatus for automatic determination of a fiber type of at least one optical fiber span used in a link of an optical network, the method comprising the steps of measuring a length of said optical fiber span; measuring a chromatic dispersion of said optical fiber span; determining a fiber dispersion profile of said optical fiber span on the basis of the measured length and the measured fiber chromatic dispersion; and determining a fiber category and/or a specific fiber type of said optical fiber span depending on the determined fiber dispersion profile.
Abstract:
A method and apparatus for automatic determination of a fiber type of at least one optical fiber span used in a link of an optical network, the method comprising the steps of measuring a length of said optical fiber span; measuring a chromatic dispersion of said optical fiber span; determining a fiber dispersion profile of said optical fiber span on the basis of the measured length and the measured fiber chromatic dispersion; and determining a fiber category and/or a specific fiber type of said optical fiber span depending on the determined fiber dispersion profile.
Abstract:
A method and apparatus for performing an automatic power adjustment wherein a signal power level of an optical signal transmitted by an optical transceiver via an optical span to a far-end device is adjusted automatically in response to a determined span loss of the optical span to achieve a predetermined desired receive signal power level of the optical signal at the far-end device.
Abstract:
The length of the optical fiber section under tension expands by a certain amount that is proportional to the level of tension applied to it. Monitoring the variations in the phase of the arriving signal allows to discover a fiber that is subject to a certain level of mechanical tension. With the method and apparatus according to the present invention it is possible to protect optical communication channels against failures in an optical transmission fiber that are caused by any kind of mechanical disturbances.
Abstract:
A hybrid wavelength division multiplexing system wherein one or more intensity modulated signals generated by optical amplitude modulators are co-propagated with one or more phase modulated signals generated by optical phase modulators, wherein a drive voltage of said optical amplitude modulator is adapted to reduce an extinction ratio of the intensity modulated signal to minimize a cross-phase modulation impact on the co-propagating phase modulated signals.