Abstract:
Facilitating multiple subscriber identity support in a wireless user equipment (UE) device. A UE may include or be coupled to multiple subscriber identity modules (SIMs). The UE may be configured to perform cellular communications with a first cellular network using a first subscriber identity provided by a first SIM. The UE may also be configured to perform cellular communications with a second cellular network using a second subscriber identity provided by a second SIM. The cellular communications with the first cellular network and the second cellular network may be performed concurrently using shared radio resources.
Abstract:
Electronic devices may be provided that contain wireless communication circuitry. The wireless communication circuitry may include radio-frequency transceiver circuitry coupled to multiple antennas. An electronic device may alternate between a sleep mode and a wake mode. During wake mode, the electronic device may monitor a paging channel in a wireless network for incoming paging signals. The device may use a selected one of the multiple antennas in monitoring the paging channel. If received signal quality is satisfactory, the device may maintain use of the selected one of the multiple antennas for subsequent wake period monitoring of the paging channel. If received signal quality falls below a threshold or is otherwise indicated to not be satisfactory, the device may switch to use of a different one of the multiple antennas in monitoring the paging channel. Other criteria may also be used in controlling the switching between antennas for paging channel monitoring.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C-DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.