Abstract:
This disclosure includes several different features suitable for use in circumaural and supra-aural headphones designs. Designs that include earpad assemblies that improve acoustic isolation are discussed. User convenience features that include automatically detecting the orientation of the headphones on a user's head are also discussed. Various power-saving features, design features, sensor configurations and user comfort features are also discussed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
An audio system has a housing in which are integrated a number of microphones. A programmed processor accesses the microphone signals and produces a number of acoustic pick up beams based groups of microphones, an estimation of voice activity and an estimation of noise characteristics on each beam. Two or more beams including a voice beam that is used to pick up a desired voice and a noise beam that is used to provide information to estimate ambient noise are adaptively selected from among the plurality of beams, based on thresholds for voice separation and thresholds for noise-matching. Other embodiments are also described and claimed.
Abstract:
A wireless communication device establishes voice communication between a supported user and a selected remote device supporting another user via a point-to-point wireless ad hoc network link. The device selects a particular remote device, establishes an ad hoc network link with the selected remote device, and communicates voice communication signals with the selected remote device. Selection can be based upon a user interaction with the device which specifies the particular remote device. The user interaction can include interaction with a graphical representation of the particular remote device presented in a graphical user interface. The user interaction can include an audio command received via an audio interface of the device. The device can include one or more headset devices, including a pair of headset devices which can be switched between providing audio signals to a single user to supporting communication between separate users via an ad hoc network link.
Abstract:
An acoustic device such as a microphone or speaker is positioned with and coupled to a housing to connect an acoustic port of the acoustic device with an external opening of the housing. A reservoir is connected to the external opening via a bleed channel. The bleed channel may be less resistive to liquid ingress than the acoustic port. As such, the reservoir and bleed channel may redirect liquid from the external opening away from the acoustic port. In some implementations, the reservoir and/or the bleed channel may be defined by one or more acoustically permeable barriers such as meshes that cover the acoustic port, compressible materials such as foams that form a perimeter around the acoustic port, and/or adhesive layers that couple the acoustic device, the housing, and/or one or more other components.
Abstract:
A wireless communication device establishes voice communication between a supported user and a selected remote device supporting another user via a point-to-point wireless ad hoc network link. The device selects a particular remote device, establishes an ad hoc network link with the selected remote device, and communicates voice communication signals with the selected remote device. Selection can be based upon a user interaction with the device which specifies the particular remote device. The user interaction can include interaction with a graphical representation of the particular remote device presented in a graphical user interface. The user interaction can include an audio command received via an audio interface of the device. The device can include one or more headset devices, including a pair of headset devices which can be switched between providing audio signals to a single user to supporting communication between separate users via an ad hoc network link.
Abstract:
A close-talk detector detects a near-end user's speech signal, while an adaptive ANC process is running, and in response helps prevent the filter coefficients of an adaptive filter of the ANC process from being corrupted, thereby reducing the risk of the adaptive filters diverge. Upon detecting speech using a vibration sensor signal and one or more microphone signals, the detector asserts a signal that slows down, or even freezes or halts, the adaptation of the adaptive filter. The signal may be de-asserted when no more speech is being detected, thereby allowing the adaptive ANC process to resume its normal rate adaptation of the filter. The detector may continuously operate in this manner during the call, as the user talks and then pauses and then resumes talking. Other embodiments are also described.
Abstract:
A personal audio device has a bone conduction pickup transducer, having a housing of which a rigid outer wall has an opening formed therein. A volume of yielding material fills the opening in the rigid outer wall. An electronic vibration sensing element is embedded in the volume of yielding material. The housing is shaped, and the opening is located, so that the volume of yielding material comes into contact with an ear or cheek of a user who is using the personal audio device. Other embodiments are also described and claimed.
Abstract:
A method of detecting a user's voice activity in a mobile device is described herein. The method starts with a voice activity detector (VAD) generating a VAD output based on (i) acoustic signals received from microphones included in the mobile device and (ii) data output by an inertial sensor that is included in an earphone portion of the mobile device. The inertial sensor may detect vibration of the user's vocal chords modulated by the user's vocal tract based on vibrations in bones and tissue of the user's head. A noise suppressor may then receive the acoustic signals from the microphones and the VAD output and suppress the noise included in the acoustic signals received from the microphones based on the VAD output. The method may also include steering one or more beamformers based on the VAD output. Other embodiments are also described.
Abstract:
A headphone comprising: two headphone earcups each comprising: an earcup housing defining an active chamber that acoustically couples a sound output side of a speaker to an ear of a user, and an inactive chamber that surrounds the active chamber; and a passive valve assembly configured to open in response to a positive pressure and a negative pressure within the active chamber to fluidly couple the active chamber to the inactive chamber and equalize a pressure between the active chamber and the inactive chamber.