Abstract:
A wireless electronic device having first and second baseband processors is provided. In one suitable arrangement, radio-frequency power splitters and adjustable low noise amplifiers may be form in the receive paths. The use of power splitters allow signals associated with the first and second baseband processors to be received in parallel. In another suitable arrangement, radio-frequency switches are used in place of the power splitters. The states of the switches may be controlled using at least one of the first and second baseband processors. The use of switches instead of power splitters requires that wake periods associated with the first baseband processor and wake periods associated with the second baseband processor are non-overlapping. To ensure minimal wake period collision, a wake period associated with the second baseband processor may be positioned at a midpoint between two successive wake periods associated with the first baseband processor.
Abstract:
Selecting a subscriber identity in a user equipment (UE) device having multiple subscriber identities. Location information may be obtained using a first wireless communication technology. The location information may be provided to a subscriber identity module (SIM) in the UE device. A first subscriber identity may be selected by the SIM based on the location information. The UE device may be registered with a network using a second wireless communication technology. The first subscriber identity may be used to register the UE device with the network.
Abstract:
Methods and apparatus for dynamic search management in a multi-mode device. In one embodiment, a mobile device performs network search and acquisition by dynamically changing search delays and/or search frequencies. In one implementation, the mobile device adjusts the amount of time allocated for each network search based on e.g., previous network connection history (e.g., previously connected to a home network, previously connected to a roaming network), device conditions, user preferences, geographical information, etc. By focusing search effort on cellular technologies which have a high likelihood of success, the mobile device can greatly improve search time and reduce unnecessary power consumption.
Abstract:
This disclosure describes a user equipment device (UE). The UE includes one or more antennas; one or more radios, where each of the radios is configured to perform cellular communication using a plurality of radio access technologies (RATs) that support voice over an Internet protocol (IP) multimedia subsystem (IMS); one or more processors coupled to the one or more radios, where the one or more processors are configured to cause the UE to perform operations including: sending, via a first RAT, a first request for IMS registration to an IMS server; receiving, from the IMS server, an IMS rejection message indicating failure of the IMS registration; determining, based on the IMS rejection message, that the IMS registration failure is temporary; responsively re-attempting IMS registration with the IMS server; and determining to camp on the first RAT in response to receiving an IMS acceptance message from the IMS server.
Abstract:
Embodiments are presented herein of apparatuses, systems, and methods for mitigation of secondary cell failures. A user equipment (UE) may establish communication with a macro cellular base station. The UE may perform a signal quality measurement of a small cell base station and compare the signal quality measurement to a threshold. Based on the signal quality measurement exceeding the threshold, the UE may attempt to additionally connect to the small cell base station. In response to a radio link failure of the second base station, the UE may modify the first threshold. In response to subsequent failures to additionally connect to the small cell base station using the modified first threshold, the UE may disable connections to the small cell base station.
Abstract:
Embodiments are presented herein of apparatuses, systems, and methods for mitigation of secondary cell failures. A user equipment (UE) may establish communication with a macro cellular base station. The UE may perform a signal quality measurement of a small cell base station and compare the signal quality measurement to a threshold. Based on the signal quality measurement exceeding the threshold, the UE may attempt to additionally connect to the small cell base station. In response to a radio link failure of the second base station, the UE may modify the first threshold. In response to subsequent failures to additionally connect to the small cell base station using the modified first threshold, the UE may disable connections to the small cell base station.
Abstract:
Methods and apparatus for dynamic search management in a multi-mode device. In one embodiment, a mobile device performs network search and acquisition by dynamically changing search delays and/or search frequencies. In one implementation, the mobile device adjusts the amount of time allocated for each network search based on e.g., previous network connection history (e.g., previously connected to a home network, previously connected to a roaming network), device conditions, user preferences, geographical information, etc. By focusing search effort on cellular technologies which have a high likelihood of success, the mobile device can greatly improve search time and reduce unnecessary power consumption.
Abstract:
A mobile wireless device adapts receive diversity during discontinuous reception based on downlink signal quality, page indicators and page messages. When the downlink signal quality exceeds a pre-determined threshold, the mobile wireless device decodes a page indicator channel through an initial antenna, and otherwise, decodes a paging channel through the initial antenna without decoding the page indicator channel. The mobile wireless device switches to decoding the paging channel through an alternate antenna when a page indicator decodes as an erasure. When a paging message received through a single antenna decodes with an incorrect error checking code, the mobile wireless devices enables receive diversity through multiple antennas for subsequent decoding. The mobile wireless device switches between single antenna reception and multiple antenna reception based on tracking multiple consecutive error checking code failures and successes.
Abstract:
Methods and apparatus for dynamic search management in a multi-mode device. In one embodiment, a mobile device performs network search and acquisition by dynamically changing search delays and/or search frequencies. In one implementation, the mobile device adjusts the amount of time allocated for each network search based on e.g., previous network connection history (e.g., previously connected to a home network, previously connected to a roaming network), device conditions, user preferences, geographical information, etc. By focusing search effort on cellular technologies which have a high likelihood of success, the mobile device can greatly improve search time and reduce unnecessary power consumption.
Abstract:
A User Equipment (UE) device and associated method for operating a User Equipment (UE) in a wireless communication system. The UE may store a preferred roaming list in a memory. The preferred roaming list may comprise a plurality of system records which specify radio access technologies that can be used by the UE. The UE may examine the preferred roaming list to delete any duplicate system records in the PRL for respective geographic locations (GEOs). This may operate to mitigate the problems created by duplicate listing of system records within the PRL. In particular, the removal of redundant system records within the PRL may reduce or eliminate unneeded or undesired BSR algorithm execution. In addition, the removal of redundant system records within the PRL may reduce temporal service outages, since no service origination is allowed while the UE is attempting to find the most preferred system.