Abstract:
Methods, program products, and systems for using a location fingerprint database to determine a location of a mobile device are described. A mobile device can use a location fingerprint database to determine the location where GPS signals are unavailable. A server can generate location fingerprint data for the database. The server can generate the location fingerprint data using crowd sourcing, using known locations of signal sources, or both. The server can receive, from a sampling device, measurements of environment variables, e.g., signals from a signal source at one or more sampling points. The server can extrapolate, from the received measurements, estimated measurements at one or more locations in a venue. The server can store the extrapolated measurements as location fingerprint data. The server can send the location fingerprint data to a mobile device for determining a location of the mobile device when the mobile device is at the venue.
Abstract:
Methods, program products, and systems for estimating a location of a mobile device in a venue are provided. The venue can have pathways represented by a path network that includes segments connected by junctions. Estimating the location can include determining a first set of candidate locations for the mobile device, and mapping some of the candidate locations to updated candidate locations that are on or closer to one or more segments of the path network based on distances between the candidate locations and respective segments, resulting in a second set of candidate locations for the mobile device. The location of the mobile device can be derived from the second set of candidate locations.
Abstract:
Techniques of range free proximity determination are described. A mobile device can determine an entry into or exit from a proximity fence upon determining that the mobile device is sufficiently close to a signal source. The proximity fence can be a virtual fence defined by the signal source and associated with a service. The mobile device can detect signals from multiple signal sources. The mobile device can determine that, among the signal sources, one or more signal sources are located closest to the mobile device based on a ranking of the signal sources using signal strength. The mobile device can determine a probability indicating a confident level of the ranking. The mobile device can determine that the mobile device entered or exited a proximity fence associated with a highest ranked signal source satisfying a confidence threshold.
Abstract:
Systems, methods and computer program products for providing location-based services triggered by a personal geofence are disclosed. A mobile device can determine that a venue located at a geographic location and frequently visited by the mobile device in the past is associated with a particular item, service, or activity. Upon receiving a query about the item, service, or activity, the mobile device can create a temporary geofence around the venue. Using past behavior patterns and a current location, the mobile device can determine a condition to trigger execution of an application program or display of certain content. The condition can be personalized to match a life style of a user of the mobile device. Accordingly, trigging the execution of the application program or the display of the content may be based on factors other than a distance between the mobile device and a point location.
Abstract:
Techniques of category-based fence are described. A category-based fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. The group of signal sources can represent a category of entities, e.g., a particular business chain. The signal sources can be distributed to multiple discrete locations. A category-based fence associated with the group, accordingly, can correspond to multiple locations instead of a single point location and a radius. Each signal source in the group can be associated with a category identifier unique to the group and uniform among signal sources in the group. The category identifier can be programmed into each signal source. A mobile device can enter the category-based fence by entering any of the discrete locations when the mobile device detects the signal identifier. The mobile device can then execute an application program associated with the category-based fence.
Abstract:
Techniques of category-based fence are described. A category-based fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. The group of signal sources can represent a category of entities, e.g., a particular business chain. The signal sources can be distributed to multiple discrete locations. A category-based fence associated with the group, accordingly, can correspond to multiple locations instead of a single point location and a radius. Each signal source in the group can be associated with a category identifier unique to the group and uniform among signal sources in the group. The category identifier can be programmed into each signal source. A mobile device can enter the category-based fence by entering any of the discrete locations when the mobile device detects the signal identifier. The mobile device can then execute an application program associated with the category-based fence.
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
An automated environment can include an accessory device that operates according to an automation rule, to take a prescribed action when a triggering condition occurs. A controller device for the automated environment can determine a user's regular routine and can detect when the user is deviating from the regular routine. The controller device can communicate with accessory devices in the automated environment to modify their behavior relative to the automation rules.