Abstract:
Methods, systems and apparatus for a user equipment to implement a dynamic discard timer. The user equipment may generate a packet for transmission and store the packet in a buffer of the user equipment. The user equipment may then generate a timeout value for a discard timer for the buffer, where the discard timer discards the packet from the buffer when the timeout value is reached. After a predetermined amount of time, the user equipment may determine whether the packet has been discarded from the buffer and, when it is determined that the packet has not been discarded from the buffer, update the timeout value.
Abstract:
A system, apparatus and method to maintain continuity of a Voice over Long Term Evolution (LTE) (VoLTE) call. The system includes a first user equipment (UE) configured to perform a (VoLTE) call and a second UE configured to perform the VoLTE call with the first UE. The UE's are configured to maintain continuity of the VoLTE call by determining when one of a first dedicated bearer linked to a first default bearer of the first UE or a second dedicated bearer linked to a second default bearer of the second UE is lost and transmitting a signal to an Internet Protocol (IP) Multimedia Subsystem (IMS) server that prevents release of the determined dedicated bearer, the signal further triggering a re-activation of the determined dedicated bearer.
Abstract:
Transitioning a UE from a first RAT to a third RAT in an area having a first RAT, a second RAT, and a third RAT. The first RAT may be a second generation RAT, the second RAT may be a third generation RAT, and the third RAT may be a fourth generation RAT. The network of the first RAT may not provide information (e.g., a neighbor list) for the third RAT. The UE may use information to perform measurement of one or more base stations of the third RAT without attaching to the second RAT. For example, the UE may use pre-stored information to perform measurement of the third RAT. Alternatively, or additionally, the UE may receive the information (e.g., from a system information block) from the second RAT without attaching to the second RAT.
Abstract:
Performing selective tune-away by a user equipment (UE). The UE may include a first radio that is configurable to operate according to a first radio access technology (RAT) and a second RAT. The UE may use the radio to communicate using the first RAT and the second RAT using the first radio. The UE may perform handover for the first RAT. During handover, the UE may perform a page decoding for the second RAT, but may not perform (e.g., may block) neighbor cell detection for the second RAT during the handover of the first RAT. After completion of the handover, the UE may perform neighbor cell detection for the second RAT.
Abstract:
In order to reduce the time delay when transitioning between different communication protocols used to communicate information via a cellular-telephone network, an electronic device (such as a cellular telephone) may only partially disable a software stack associated with a current communication protocol. In particular, after receiving an indicator that there is a message to be communicated using a second communication protocol while the electronic device is currently configured to communicate using a first communication protocol, the electronic device may disable a portion of a software stack associated with the first communication protocol and may enable a software stack associated with the second communication protocol. Then, the electronic device communicates the message using the second communication protocol. Next, the electronic device: may disable the software stack associated with the second communication protocol and may enable the portion of the software stack associated with the first communication protocol.
Abstract:
In order to reduce the time delay when transitioning between different communication protocols used to communicate information via a cellular-telephone network, an electronic device (such as a cellular telephone) may only partially disable a software stack associated with a current communication protocol. In particular, after receiving an indicator that there is a message to be communicated using a second communication protocol while the electronic device is currently configured to communicate using a first communication protocol, the electronic device may disable a portion of a software stack associated with the first communication protocol and may enable a software stack associated with the second communication protocol. Then, the electronic device communicates the message using the second communication protocol. Next, the electronic device: may disable the software stack associated with the second communication protocol and may enable the portion of the software stack associated with the first communication protocol.
Abstract:
Apparatuses, systems, and methods for providing maximum transmit power control when utilizing multiple radio access technologies. For example, a wireless communication device comprising two cellular radios may intend to transmit on the first radio, while concurrently transmitting on the second radio. To ensure compliance with a maximum transmit power limitation, the device may determine an allowed transmit power level of the first radio, representing a difference between the maximum transmit power limitation and the current transmit power level being transmitted by the second radio. The device may also determine a threshold power level for a communication by the first radio. If the allowed transmit power level meets the threshold power level, then the device may transmit the first communication having a power level between the threshold power level and the allowed transmit power level. Otherwise, the device may forego transmission of the first communication.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform methods to implement mechanisms for performing a listen again after talk procedure to detect collisions over an access medium. The wireless device may determine a frequency and configuration of modified transmission frames for transmission over an access medium (licensed or unlicensed) and may further determine a timing of the modified transmission frames within a transmission occasion. The wireless device may detect, during a listening period of the modified transmission frame, a collision and may adjust, based, at least in part, on the detected collision, a remaining transmission schedule for the transmission schedule and/or LBT parameters.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform methods to implement mechanisms for performing a listen again after talk procedure to detect collisions over an access medium. The wireless device may determine a frequency and configuration of modified transmission frames for transmission over an access medium (licensed or unlicensed) and may further determine a timing of the modified transmission frames within a transmission occasion. The wireless device may detect, during a listening period of the modified transmission frame, a collision and may adjust, based, at least in part, on the detected collision, a remaining transmission schedule for the transmission schedule and/or LBT parameters.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform methods for determining resources for scheduling side-link communications. The resources may be semi-persistent and/or dynamic resources. A user equipment device (UE) may determine a resource map for use in scheduling semi-persistent resources for side-link communications with at least one wireless node. The UE may transmit a resource map request message indicating preferred resource blocks, where each resource block may be defined by a time and a frequency. The UE may receive a confirmation message that may include a report regarding a set of resource blocks. The set of resource blocks may be from the preferred resource blocks included in the resource map request message. The UE may determine, based, at least in part, on the confirmation message, resource blocks to be used for the side-link communications and initiate the side-link communications using the determined resource blocks.