Abstract:
A beam homogenizer for homogenizing a beam of radiation and an illumination system and metrology apparatus comprising such a beam homogenizer as provided. The beam homogenizer comprises a filter system having a controllable radial absorption profile and configured to output a filtered beam and an optical mixing element configured to homogenize the filtered beam. The filter system may be configured to homogenize the angular beam profile radially and said optical mixing element may be configured to homogenize the angular beam profile azimuthally.
Abstract:
Disclosed is a substrate and associated patterning device. The substrate comprises at least one target arrangement suitable for metrology of a lithographic process, the target arrangement comprising at least one pair of similar target regions which are arranged such that the target arrangement is, or at least the target regions for measurement in a single direction together are, centrosymmetric. A metrology method is also disclosed for measuring the substrate. A metrology method is also disclosed comprising which comprises measuring such a target arrangement and determining a value for a parameter of interest from the scattered radiation, while correcting for distortion of the metrology apparatus used.
Abstract:
Described is a metrology system for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology system comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
Abstract:
Described is a metrology system for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology system comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
Abstract:
Metrology apparatus and methods for measuring a structure formed on a substrate by a lithographic process are disclosed. In one arrangement an optical system illuminates the structure with radiation and detects radiation scattered by the structure. The optical system comprises a first dispersive element. The first dispersive element spectrally disperses scattered radiation exclusively from a first portion of a pupil plane field distribution along a first dispersion direction. A second dispersive element, separated from the first dispersive element, spectrally disperses scattered radiation exclusively from a second portion of the pupil plane field distribution, different from the first portion of the pupil plane field distribution, along a second dispersion direction.
Abstract:
Disclosed is a method of determining a characteristic of a target on a substrate and corresponding metrology apparatus and computer program. The method comprises determining a plurality of intensity asymmetry measurements from pairs of complementary pixels comprising a first image pixel in a first image of the target and a second image pixel in a second image of the target. The first image is obtained from first radiation scattered by the target and the second image is obtained from second radiation scattered by the target, the first radiation and second radiation comprising complementary non-zero diffraction orders. The characteristic of the target is then determined from said plurality of intensity asymmetry measurements.
Abstract:
A method for monitoring a characteristic of illumination from a metrology apparatus includes using the metrology apparatus to acquire a pupil image at different focus settings of the metrology apparatus and calculating an asymmetry value for each acquired pupil image, where each pupil image is acquired on at least one edge of a target of a substrate.
Abstract:
Disclosed is a metrology apparatus for measuring a parameter of a lithographic process, and associated computer program and method. The metrology apparatus comprises an optical system for measuring a target on a substrate by illuminating the target with measurement radiation and detecting the measurement radiation scattered by the target; and an array of lenses. Each lens of the array is operable to focus the scattered measurement radiation onto a sensor, said array of lenses thereby forming an image on the sensor which comprises a plurality of sub-images, each sub-image being formed by a corresponding lens of the array of lenses. The resulting plenoptic image comprises image plane information from the sub-images, wavefront distortion information (from the relative positions of the sub-images) and pupil information from the relative intensities of the sub-images.
Abstract:
An inspection apparatus including: a substrate holder configured to hold a substrate; an aperture device; and an optical system configured to direct a first measurement beam of radiation onto the substrate, the first measurement beam having a first intensity distribution, and configured to direct a second focusing beam of radiation onto the substrate at a same time as the first measurement beam is directed on the substrate, the second focusing beam having a second intensity distribution, wherein at least part of the second intensity distribution is spatially separated from the first intensity distribution at least at the substrate and/or the aperture device.
Abstract:
A metrology target formed by a lithographic process on a substrate includes a plurality of component gratings. Images of the target are formed using +1 and −1 orders of radiation diffracted by the component gratings. Regions of interest (ROIs) in the detected image are identified corresponding the component gratings. Intensity values within each ROI are processed and compared between images, to obtain a measurement of asymmetry and hence overlay error. Separation zones are formed between the component gratings and design so as to provide dark regions in the image. In an embodiment, the ROIs are selected with their boundaries falling within the image regions corresponding to the separation zones. By this measure, the asymmetry measurement is made more tolerant of variations in the position of the ROI. The dark regions also assist in recognition of the target in the images.