THERMOMECHANICAL PROCESSING OF HIGH STRENGTH NON-MAGNETIC CORROSION RESISTANT MATERIAL

    公开(公告)号:ZA201504566B

    公开(公告)日:2021-09-29

    申请号:ZA201504566

    申请日:2015-06-24

    Abstract: A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.

    THERMOMECHANICAL PROCESSING OF ALPHA-BETA TITANIUM ALLOYS

    公开(公告)号:CA2892936C

    公开(公告)日:2021-08-10

    申请号:CA2892936

    申请日:2014-02-28

    Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.

    MELTING FURNACE INCLUDING WIRE-DISCHARGE ION PLASMA ELECTRON EMITTER

    公开(公告)号:CA2680546C

    公开(公告)日:2016-06-07

    申请号:CA2680546

    申请日:2008-03-26

    Abstract: An apparatus for melting an electrically conductive metallic material includes a vacuum chamber and a hearth disposed in the vacuum chamber. At least one wire-discharge ion plasma electron emitter is disposed in or adjacent the vacuum chamber and is positioned to direct a wide-area field of electrons into the vacuum chamber, wherein the wide-area electron field has sufficient energy to heat the electrically conductive metallic material to its melting temperature. The apparatus may further include, at least one of a mold and an atomizing apparatus which is in communication with the vacuum chamber and is positioned to receive molten material from the hearth. Preferably, the pressure within the furnace chamber is maintained at more than 5,3 Pa to decrease evaporation of volatile elements.

    Procesamiento termomecánico de aleaciones basadas en níquel

    公开(公告)号:ES2567303T3

    公开(公告)日:2016-04-21

    申请号:ES12722236

    申请日:2012-05-07

    Abstract: Un proceso que comprende: una primera etapa de calentamiento que comprende calentar una pieza de trabajo de aleación basada en níquel hasta una temperatura en el intervalo de 1.093 ºC (2.000 ºF) hasta 1.163 ºC (2.125 ºF); una primera etapa de forja que comprende la forja rotativa de la pieza de trabajo de aleación basada en níquel calentada para una reducción en área de un 30 % a un 70 %, en donde la pieza de trabajo de aleación basada en níquel está a una temperatura en el intervalo de 1.093 ºC (2.000 ºF) hasta 1.163 ºC (2.125 ºF) cuando comienza la primera etapa de forja; una segunda etapa de calentamiento que comprende calentar la pieza de trabajo de aleación basada en níquel sometida a forja rotativa hasta una temperatura en el intervalo de 954 ºC (1.750 ºF) hasta 1.052 ºC (1.925 ºF), en donde la pieza de trabajo de aleación basada en níquel sometida a forja rotativa se mantiene a temperatura elevada y no se deja enfriar hasta la temperatura ambiente entre la finalización de la primera etapa de forja y el comienzo de la segunda etapa de calentamiento; y una segunda etapa de forja que comprende el forjado rotativo de la pieza de trabajo de aleación basada en níquel calentada para una reducción en área de un 20 % a un 70 %, en donde la pieza de trabajo de aleación basada en níquel está a una temperatura en el intervalo de 954 ºC (1.750 ºF) hasta 1.052 ºC (1.925 ºF) cuando comienza la segunda etapa de forja; en donde la pieza de trabajo de aleación basada en níquel comprende, en peso, hasta el 0,05 % de carbono, del 27,0 % al 31,0 % de cromo, hasta el 0,5 % de cobre, del 7,0 % al 11,0 % de hierro, hasta el 0,5 % de manganeso, hasta el 0,015 % de azufre, hasta el 0,5 % de silicio, al menos el 58 % de níquel, e impurezas secundarias.

Patent Agency Ranking