Abstract:
An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens.
Abstract:
An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens.
Abstract:
A multi semiconductor source tunable spectroscopy system has two or more semiconductor sources for generating tunable optical signals that are tunable over different spectral bands. The system enables the combination of these tunable signals to form an output signal that is tunable over a combined band including these individual spectral bands of the separate semiconductor sources. The system further compensates for spectral roll-off associated with the semiconductor sources. Specifically, near the limits of the semiconductor sources spectral bands, the power in the tunable signal tends to degrade or decrease. The system compensates for this roll-off using drive current control, attenuators, or electronic compensation.
Abstract:
An optical detector system comprises a hermetic optoelectronic package, an optical bench installed within the optoelectronic package, a balanced detector system installed on the optical bench. The balanced detector system includes at least two optical detectors that receive interference signals. An electronic amplifier system installed within the optoelectronic package amplifies an output of at least two optical detectors. Also disclosed is an integrated optical coherence tomography system. Embodiments are provided in which the amplifiers, typically transimpedance amplifiers, are closely integrated with the optical detectors that detect the interference signals from the interferometer. Further embodiments are provided in which the interferometer but also preferably its detectors are integrated together on a common optical bench. Systems that have little or no optical fiber can thus be implemented.
Abstract:
An optical power control system for a semiconductor source spectroscopy system controls power fluctuations in the tunable signal (210) from the spectroscopy system (100) and thus improves the noise performance off the system. This general solution has advantages relative to other systems that simply detect reference power levels during the scan and then correct the detected signal after interaction with the sample by reducing the requirements for coordinating the operation of the sample detectors and power or reference detectors. The spectroscopy system (100) comprises a semiconductor source (200, 610, 622) and a tunable filter (612). The combination of the semiconductor source (200, 610, 622) and tunable signal (210) illuminate a sample (10) with a tunable signal (210), being tunable over a scan band (510). The power control system comprises an amplitude detector system (320, 322) for detecting the power of the tunable optical signal (210) and power control system (410, 411, 318) for regulating the amplitude of the tunable optical signal (210) in response to its detected power.
Abstract:
Integrated spectroscopy systems are disclosed. In some examples, integrated tunable detectors, using one or multiple Fabry-Perot tunable filters, are provided. Other examples use integrated tunable sources. The tunable source combines one or multiple diodes, such as superluminescent light emitting diodes (SLED), and a Fabry Perot tunable filter or etalon. The advantages associated with the use of the tunable etalon are that it can be small, relatively low power consumption device. For example, newer microelectrical mechanical system (MEMS) implementations of these devices make them the size of a chip. This increases their robustness and also their performance. In some examples, an isolator, amplifier, and/or reference system is further provided integrated.
Abstract:
An optical coherence tomography system utilizes an optical swept source that frequency scans at least two different sweep rates. In this way, the system can perform large depth scans of the sample and then the same system can perform shorter depth high precision scans, in one specific example. In order to optimally use the analog to digital converter that samples the interference signal, the system further samples the interference signals at different optical frequency sampling intervals depending upon the selected sweep rates of the optical swept source. This allows the system to adapt to different sweep rates in an optimal fashion.
Abstract:
An optical coherence analysis system uses a laser swept source that is constrained to operate in a mode locked condition. This is accomplished by synchronously changing the laser cavity's gain and/or phase based on the round trip travel time of light in the cavity. This improves high speed tuning by taking advantage of frequency shifting mechanisms within the cavity and avoids chaotic laser behavior.
Abstract:
A multi semiconductor source tunable spectroscopy system has two or more semiconductor sources for generating tunable optical signals that are tunable over different spectral bands. The system enables the combination of these tunable signals to form an output signal that is tunable over a combined band including these individual spectral bands of the separate semiconductor sources. The system further compensates for spectral roll-off associated with the semiconductor sources. Specifically, near the limits of the semiconductor sources spectral bands, the power in the tunable signal tends to degrade or decrease. The system compensates for this roll-off using drive current control, attenuators, or electronic compensation.