Abstract:
Two or more two-dimensional Fourier transforms are acquired from different perspectives of a three-dimensional object region. A three-dimensional Fourier transform is then constructed using tomographic methods, permitting the application of image analysis algorithms analogous to those used for two-dimensional images.
Abstract:
Three dimensional reconstruction of an object of interest moving at a constant velocity. The object of interest is centered. The object of interest is imaged with optical point sources located at multiple projection angles around the object of interest, in cooperation with opposing time delay and integration (TDI) image sensors located at a distance from the objects of interest such that there is no focal plane within the objects of interest during imaging. Each of the TDI sensors has a line transfer rate synchronized to the constant velocity of the objects of interest.
Abstract:
A microtomographic system (10) for generating high-resolution, three dimensional images of a specimen (16) is disclosed. The microtomograph system includes an x-ray generator (12) that produces an x-ray beam (14), a specimen holder (18) that holds the specimen in the beam, and an x-ray detector (20) that measures the attenuation of the beam through the specimen. Two projections of each view of the specimen are made with this microtomographic system. Each projection is made with a different intensity x-ray beam. After the projections of one view of the specimen are made, the specimen is rotated on the specimen holder and another set of projections are made. The projections of each view of the specimen are analyzed together to provide a quantitative indication of the phase fraction of the material comprising the specimen. The projections of the different views are combined to provide a three-dimensional image of the specimen.
Abstract:
A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
Abstract:
A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
Abstract:
An apparatus and method for sorting particles in a laminar flow microfluidic channel includes a cantilevered coaxial flow injector in a microfluidic device, the cantilevered coaxial flow injector including an elongated cantilever element integrated into the microfluidic device. A coaxial channel runs through the elongated cantilever element, where coaxial channel is sized to pass particles of a predetermined size. An actuator is coupled to the elongated cantilever element, for actuating said elongated cantilever element.
Abstract:
A system and method for rapidly detecting cells of interest using multi-dimensional, highly quantitative, nuclear and cytoplasmic densitometric features (NDFs and CDFs) includes a flow optical tomography (FOT) instrument capable of generating various optical projection images (or shadowgrams) containing accurate density information from a cell, a computer and software to analyze and reconstruct the projection images into a multi-dimensional data set, and automated feature collection and object classifiers. The system and method are particularly useful in the early detection of cancers such as lung cancer using a bronchial specimen from sputum or cheek scrapings and cervical/ovarian cancer using a cervical scraping, and the system can be used to detect rare cells in specimens including blood.
Abstract:
An interactive process for sorting biological specimens includes the steps of processing a biological specimen to provide an analysis score, sorting the biological specimens according to the analysis score into categories including: clearly normal, interactive review, and microscopy review, and selecting a field-of-view (FOV) for the biological specimens sorted into the interactive review category.
Abstract:
Image primitive based maskless semiconductor wafer and liquid crystal display panel inspection by the characterization of wafer patterns. Potential defects are detected as exceptions to the rules of general semiconductor surface pattern structure. The wafer or liquid crystal display, lcd, structure is encoded into multiple profiles of a set of primitive characterization modules. Primitive profiles are correlated with potential defects along with aligned pattern images for surface component to surface component, lcd active matrix element to lcd active matrix element, comparison and further refines the results using data from multiple surface components or lcd active matrix elements. Multiple stage defect classification is applied to the potential defects to reject false defects. Multiple layer correlation and automatic learning enhance and tailor detection rules during a ramp-up stage. There is a dramatic reduction of false and nuisance defects and a high sensitivity to critical defects. The highly robust method is not sensitive to factors such as metal grain structure and imperfect alignment. Automatic learning tailors the inspection system for a specific semiconductor surface design and manufacturing process.
Abstract:
A scanning electron microscope useful for obtaining microscopic data or images of wet specimens is provided with comprises an electron source capable of emitting a beam of electrons; an electron optical vacuum column with means for focussing the beam of electrons; means for scanning the focussed beam of electrons across a specimen; a differentially pumped aperture column attached to the electron optical vacuum column and having at least two walls perpendicular to the sides of the differentially pumped aperture column defining a suitable series of pressure gradients, each wall having an aperture aligned to permit the beam of electrons to pass through said differentially pumped aperture column; a specimen chamber which may be maintained at normal atmospheric pressure; a specimen mount; means of preventing the buildup of negative charge on the surface of the specimen; and a detector and image recording system.