Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
Electronic equipment with displays may be provided. A first display may be mounted in a first housing and a second display may be mounted in a second housing that is adjacent to the first housing. The first housing may rotate relative to the second housing about a hinge axis. The first housing may be a lid and the second housing may be a base housing that is coupled to the lid by a hinge. A first display may be mounted in the first housing and a second display may be mounted in the second housing. Polarizer layers and other optical layers in the displays may be configured to provide a viewer with the ability to view images on the displays while wearing vertically polarized sunglasses and to suppress reflections of light emitted by the first display off of the second display.
Abstract:
An electronic device may be provided with a display having a backlight with light sources of different colors. The electronic device may include a color ambient light sensor that measures the color of ambient light and control circuitry that adjusts the color of light emitted from the backlight based on the color of ambient light. The light sources may include at least first and second light-emitting diodes that emit light having different color temperatures. The control circuitry may adjust the intensity of light emitted from the first light-emitting diode relative to the intensity of light emitted from the second light-emitting diode to produce a backlight color that more closely matches the color of ambient light. The first and second light-emitting diodes may include an ultraviolet light-emitting diode die and a blue light-emitting diode die that are mounted in a common semiconductor package.
Abstract:
A display may have upper and lower display layers. A layer of liquid crystal material may be interposed between the upper and lower display layers. The display layers may have substrates. A thin-film transistor layer may have a layer of thin-film transistor structures on a substrate such as a clear glass layer. A planarization layer may be formed on the thin-film transistor structures. A transparent conductive layer may be formed on the planarization layer. The display may have a dielectric layer on the transparent conductive layer. Pixels may be formed in the display layers. The pixels may include pixel electrodes having fingers. The fingers may be formed on the dielectric layer. Trenches in the dielectric layer may be formed between the fingers. The trenches may extend to the transparent conductive layer or may be formed only partway into the dielectric layer.
Abstract:
One embodiment describes an electronic display. The electronic display includes display driver circuitry that display an image frame on the electronic device using a first display pixel and a second display pixel, touch sensing circuitry that detect user interaction with the electronic display, and a timing controller. The timing controller receives image data, in which the image data describes a target grayscale value of the first pixel and the second pixel to display the image frame, instructs the display driver circuitry to display a first portion of the image frame by writing the image data to the first display pixel, instructs the touch sensing circuitry to determine whether a user touch is present on a surface of the electronic display after the first portion of the image frame is displayed, determines grayscale value displayed by the second display pixel to display a previous image frame, and instructs the display driver circuitry to display a second portion of the image frame by writing adjusted image data to the second display pixel when the displayed grayscale value differs from the target grayscale value of the second pixel by more than a threshold amount.
Abstract:
A display may have a first stage such as a color liquid crystal display stage and a second stage such as a monochromatic liquid crystal display stage that are coupled in tandem so that light from a backlight passes through both stages. The dynamic range of the display may be enhanced by using the second stage to perform local dimming operations. The pixel pitch of the second stage may be greater than the pixel pitch of the first stage to ease alignment tolerances and reduce image processing complexity. The color stage and monochromatic stages may share a polarizer. A color filter in the color stage may have an array of red, green, and blue elements or an array of white, red, green, and blue elements. The color stage may be a fringe field display and the monochrome stage may be an in-plane switching display or a twisted nematic stage.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may operate the display in different modes. In a paper mode, display control circuitry may use stored spectral reflectance data to adjust display colors such that the colors appear as they would on a printed sheet of paper. In a low light mode when the ambient light level is below a threshold, the light emitted from the display may be adjusted to mimic the appearance of an incandescent light source. In a bright light mode when the ambient light level exceeds a threshold, the light emitted from the display may be adjusted to maximize readability in bright light. The target white point of the display may be adjusted based on which mode the display is operating in.
Abstract:
A display may have an array of pixels. The display may be controlled using display driver circuitry. The display driver circuitry may analyze image data to be displayed on the array. When static content is detected, the rate at which the pixels are refreshed may be adjusted to conserve power. If a static image is detected, the gate lines may be asserted at a lower refresh rate than if moving content is detected. To avoid visible artifacts, the display driver circuitry may use temporal and spatial refresh rate buffers. Temporal buffers ensure that refresh rates are changed gradually as a function of time, thereby minimizing flicker. Spatial refresh rate buffers are used to provide a smooth transition between low refresh rate and high refresh rate regions in a display as a function of position.
Abstract:
A display may have thin-film transistor circuitry on a substrate with a substrate surface. An array of organic light-emitting diodes may be formed on the thin-film transistor circuitry. The organic light-emitting diodes may have anodes, cathodes, and emissive material located between the anodes and cathodes. The anodes may be oriented so that they are not parallel to the substrate surface. The anodes may have curved shapes or may have tilted shapes. Tilted anodes may have multiple segments. Anodes may be tilted by amounts that vary as a function of lateral distance across a display.
Abstract:
A display may have upper and lower display layers. A layer of liquid crystal material may be interposed between the upper and lower display layers. The display layers may have substrates. A thin-film transistor layer may have a layer of thin-film transistor structures on a substrate such as a clear glass layer. A planarization layer may be formed on the thin-film transistor structures. A transparent conductive layer may be formed on the planarization layer The display may have a dielectric layer on the transparent conductive layer. Pixels may be formed in the display layers. The pixels may include pixel electrodes having fingers. The fingers may be formed on the dielectric layer. Trenches in the dielectric layer may be formed between the fingers. The trenches may extend to the transparent conductive layer or may be formed only partway into the dielectric layer.