Abstract:
A device receives a time-based restriction for usage by a first user with respect to an application, a website or a device-level function. The device receives encrypted data indicating a usage by the first user on a second device with respect to the application, website or device-level function. The device determines that at least one of the usage by the first user on the second device or a usage by the first user on the device with respect to the application, website or device-level function violates the time-based restriction. The device provides, in response to the determining, a notification that the time-based restriction has been violated by the first user.
Abstract:
Apparatus and methods to communicate audio data from either an active wireless device or a requesting wireless device to one or more audio reproduction devices that are simultaneously communicatively coupled to both the active wireless device and to the requesting wireless device are disclosed. Responsive to a request from the requesting wireless device to transmit audio data to the one or more audio reproduction devices, the active wireless device determines whether to transmit audio data from the requesting wireless device based at least in part on an audio status of the active wireless device and a set of predetermined arbitration criteria that prioritizes among applications and operating system processes that generate the audio data.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
Controlling the output of audio based on the mode of an electronic device having a sound mode, silent mode, and mute mode, along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device, while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory or providing an instruction on the device related to volume control. Other aspects are also described and claimed.
Abstract:
A system and method for routing communication to a common audio output device connected to each of two or more audio signal source devices. For each of the two or more audio signal source devices, a set of inputs are assessed. The set of inputs include: an operational state of the audio signal source device, an activity the audio signal source device, an audio-producing application being executed by the audio signal source device, and a degree of user activity with the audio-producing application being executed by the audio signal source. At a point in time, an audio routing score is generated for each of the two or more audio signal source devices according to a weighted calculation of the set of inputs based on the assessing. Finally, an audio signal routing decision is made, to route an audio signal from one of the two or more audio signal source devices to the audio output device, based on the audio routing score for each of the two or more audio signal source devices.
Abstract:
While displaying an application user interface, a device detects a first input to an input device of the one or more input devices, the input device provided on a housing of the device that includes the one or more display generation components. In response to detecting the first input, the device replaces display of at least a portion of the application user interface by displaying a home menu user interface via the one or more display generation components. While displaying the home menu user interface, the device detects a second input to the input device provided on the housing of the device; and in response to detecting the second input to the input device provided on the housing of the device: the device dismisses the home menu user interface.
Abstract:
In some implementations a system can be configured to reduce the burden of pairing user devices with playback devices. For example, all users (or user devices) who commonly operate within a particular environment (e.g., a home) can be configured as authorized users of playback devices within the particular environment. When one of the authorized users pairs a user device with a playback device, all of the user devices for all authorized users can be automatically paired with the playback device as a result of the single pairing. Thus, only a single authorized user is burdened with the pairing process in order to pair all authorized users with the playback device.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
In some implementations, a user device can predictively route media content to a remote playback device based on playback context information obtained by the user device. The playback context can include local playback context information related to the state and/or context of the user device. The playback context can include remote playback context information related to the state and/or context of available remote playback devices. Based on the playback context information obtained by the user device, the user device can generate a predictive score for each available playback device that indicates or predicts the likelihood that the user will want to send media content to the corresponding playback device. The user device can generate and present a graphical user interface that can identify the playback devices having predictive scores over a threshold score. In some instances, the user device can automatically route selected media content to a predicted playback device.