Abstract:
Described are semiconductor devices and methods of making semiconductor devices with a barrier layer comprising cobalt and manganese nitride. Also described are semiconductor devices and methods of making same with a barrier layer comprising CoMn(N) and, optionally, an adhesion layer.
Abstract:
Methods of selectively depositing a feature onto a substrate surface while maintaining substantially straight sidewalls on the feature. A portion of the feature is grown and then covered with a protective film. The protective film is removed from the top of the feature, leaving some of the film on the sides of the feature and the process is repeated to grow a feature of desired thickness.
Abstract:
Embodiments of the invention provide processes for depositing a cobalt layer on a barrier layer and subsequently depositing a conductive material, such as copper or a copper alloy, thereon. In one embodiment, a method for depositing materials on a substrate surface is provided which includes forming a barrier layer on a substrate, exposing the substrate to dicobalt hexacarbonyl butylacetylene (CCTBA) and hydrogen to form a cobalt layer on the barrier layer during a vapor deposition process (e.g., CVD or ALD), and depositing a conductive material over the cobalt layer. In some examples, the barrier layer and/or the cobalt layer may be exposed to a gas or a reagent during a treatment process, such as a thermal process, an in situ plasma process, or a remote plasma process.
Abstract:
Described are semiconductor devices and methods of making semiconductor devices with a barrier layer comprising cobalt and manganese nitride. Also described are semiconductor devices and methods of making same with a barrier layer comprising CoMn(N) and, optionally, an adhesion layer.
Abstract:
Methods of selectively depositing a feature onto a substrate surface while maintaining substantially straight sidewalls on the feature. A portion of the feature is grown and then covered with a protective film. The protective film is removed from the top of the feature, leaving some of the film on the sides of the feature and the process is repeated to grow a feature of desired thickness.