Abstract:
A die-cast aluminum alloy and a preparation method and application thereof are disclosed. Based on the total weight of the aluminum alloy, the aluminum alloy includes: 8-11 wt% of Si, 2.5-5 wt% of Cu, 0.5-1.5 wt% of Mg, 0.1-0.3 wt% of Ni, 0.6-1.2 wt% of Fe, 0.1-0.3 wt% of Cr, 0.03-0.05 wt% of Sr, 0-0.3 wt% of Er, 80.25-88.1 wt% of Al, and 0.1 wt% or below of impurities.
Abstract:
The present disclosure relates to a copper based microcrystalline alloy and a preparation method thereof, and an electronic product. In percentage by weight and based on the total amount of the copper based microcrystalline alloy, the copper based microcrystalline alloy includes: 30-60 wt% of Cu; 25-40 wt% of Mn; 4-6 wt% of Al; 10-17 wt% of Ni; 0.01-10 wt% of Si; and 0.001-0.03% of Be.
Abstract:
A metal composite, a method of preparing the metal composite, a metal-resin composite, and a method of preparing the metal-resin composite are provided. The metal composite comprises: a metal substrate comprising a first layer formed on a surface of the metal substrate and an anodic oxidation layer formed on the first layer. The first layer comprises a first pore having an average diameter of about 10 nanometers to about 1 millimeter, and the metal composite comprises aluminum alloy or aluminum. The anodic oxidation layer comprises a second layer contacted with the first layer of the metal substrate and a third layer formed on an outer surface of the second layer, and the second layer comprises a second pore having an average diameter of about 10 nanometers to about 800 microns, and the third layer comprises a third pore having an average diameter of about 10 nanometers to about 800 microns.
Abstract:
The disclosure relates to a Cu-based microcrystal alloy and a preparation method thereof. Through being metered in percentage by mass, the Cu-based microcrystal alloy provided by the disclosure includes 20 to 30 percent of Mn, 0.01 to 10 percent of Al, 5 to 10 percent of Ni, 0.3 to 1.5 percent of Ti, 0 to 1.5 percent of Zr, 0.05 to 2 percent of Si and 45 to 74.64 percent of Cu.
Abstract:
The present disclosure discloses a thermally conductive aluminum alloy and application thereof. The thermally conductive aluminum alloy contains alloying elements, unavoidable impurities and the balance of an aluminum element. Based on the total weight of the thermally conductive aluminum alloy, the alloying elements include: 5.0 to 11.0 wt% of Si, 0.4 to 1.0 wt% of Fe, 0.2 to 1.0 wt% of Mg, less than 0.1 wt% of Zn, less than 0.1 wt% of Mn, less than 0.1 wt% of Sr and less than 0.1 wt% of Cu. The thermally conductive aluminum alloy prepared by the present disclosure has a tensile strength of not less than 250 MPa, a yield strength of not less than 150 MPa, an elongation of not less than 3.5%, and a thermal conductivity of not less than 150 W/(m•K).
Abstract:
A method of preparing an aluminum alloy resin composite comprises: providing an aluminum alloy substrate having an oxide layer on a surface thereof, wherein the oxide layer has one or more nanopores; forming one or more corrosion pores on an outer surface of the oxide layer by using a corrosion agent, wherein the corrosion agent is at least one selected from a group of ammonia, ammonium salt, hydrazine, hydrazine derivative, and water-soluble amine compound; and injection molding a resin composition to the surface of the aluminum alloy substrate.
Abstract:
A stainless steel-resin composite and method of preparing the same are provided. The method comprises providing a stainless steel substrate, spraying aluminum particles onto a first surface of the stainless steel substrate via thermal spraying to form an aluminum layer on the first surface of the stainless steel substrate, removing the aluminum layer by immersing the stainless steel substrate into an alkaline solution with a pH value greater than or equal to 10 so as to form a porous surface, and injecting a resin composition onto the porous surface of the stainless steel substrate so as to form a resin layer.
Abstract:
A conductive sheet, a conductive strip, and an electrical connector for a vehicle are disclosed. The conductive sheet includes a conductive sheet body, the conductive sheet body is a flat ribbon structure, and the conductive sheet body satisfies the following condition:
ω is the width of the conductive sheet body, measured in mm. δ represents the thickness of the conductive sheet body, measured in mm. represents a standard conductivity percentage of a pure copper material, and has a value of 100% IACS. represents a conductivity percentage of the conductive sheet body, measured in % IACS. k is 1.07% IACS/mm2. The conductivity percentage of the conductive sheet body is 55% IACS to 80% IACS.
Abstract:
The present disclosure discloses an aluminum alloy, based on a total mass of the aluminum alloy, including: 9-12% Si; 3.0-5.0% Zn; 1.5-2.6% Cu; 0.4-0.9% Mn; 0.2-0.6% Mg; 0.05-0.25% Fe; 0.03-0.35% Zr; 0.05-0.2% Ti; 0.005-0.04% Sr; 0.01-0.02% Ga; 0.005-0.01% Mo; 0.001-0.02% Cr; 0.005-0.3% Ni; 78.01-85.624% Al; and inevitable impurity elements.
Abstract:
An aluminum alloy and application thereof are disclosed. Based on a total mass of the aluminum alloy, the aluminum alloy includes: 7%-11% Si, 0.4%-1.0% Fe, 0.001%-0.2% Mg, 0.001%-0.2% Cu, 0.001%-0.2% Zn, 0.005%-0.1% Mn, 0.01%-0.06% Sr, 0.003%-0.05% B, 0.01%-0.02% Ga, 0.001%-0.01% Mo, 0.001%-0.2% Ce, 0.0003%-0.02% La, and aluminum and inevitable impurity elements as a balance, where a total amount of the impurity elements is less than 0.1%.