Abstract:
A type of winding assembly type lithium ion secondary power battery includes: winding assembly type electrode cores wound with positive electrodes, negative electrodes and a separation membrane, electrolyte, and a battery shell. Its characteristics are: the interior of the battery shell carries at least one electrode units formed by electrode holders holding many stacked electrode cores. The terminal leads of the current collector for all positive and negative electrode cores are led from the upper and lower ends of the electrode unit respectively. The positive and negative terminals on cover boards and the outer side of the cover boards are connected to terminal leads of the current collector by built-in fasteners. There is a separation ring between the electrode core body of the battery and the cover boards of the battery. The present invention simplifies the manufacturing technology, increases the energy density of the battery, the mechanical property and safety property of the battery, and has an excellent high discharge property.
Abstract:
Embodiments of the present disclosure provide a battery heating system, a battery assembly and an electric vehicle. The battery heating system includes: a battery group having a positive pole and a negative pole; a switch having a first end connected with the positive pole; a large-current discharge module, and a controller connected to the switch and configured to control the switch according to a temperature of the battery group. A first end of the large-current discharge module is connected to a second end of the switch, and a second end of the large-current discharge module is connected to the negative pole. When the switch is turned on, the battery group discharges via the large-current discharge module and the battery group is heated due to an internal resistance thereof.
Abstract:
The present invention discloses a method and a device for controlling battery heating. The method may comprise the following steps of: starting battery heating when conditions for starting battery heating are met; and stopping battery heating when conditions for stopping battery heating are met. The conditions for stopping battery heating may be at least one of the following: (a) an absorbed energy of the battery reaching a predetermined energy; (b) a period of time during which a discharging current of the battery maintains constant reaching a predetermined period of time; (c) the discharging current starting to decrease; or a heating time reaching a maximum heating time. The method and the device according to the present invention consider a plurality of conditions including temperature, discharging current, battery SOC and heating time etc. to determine battery heating, which may meet requirements of the practical applicabilities and may not damage the battery with enhanced battery lifespan.
Abstract:
A vehicle capable of being driven by a battery system is provided. The vehicle includes at least one motor/generator and a battery system for supplying electrical power to and receiving electrical power from the motor/generator. The battery system includes multiple battery packs, and each battery pack comprises a plurality of cells. The cells in each battery pack are electrically connected with one another. Multiple battery pack housings are provided to house a plurality of cells. Each battery pack housing facilitates electrical connection to one or more other battery packs. The system also includes a compartment containing the multiple battery packs in their housings. The compartment facilitates electrical connection to the motor/generator.
Abstract:
An electrochemical storage cell having a coiled core is disclosed. The coiled core includes a cathode sheet, an anode sheet, and a separator sheet. An anode connector is connected with the anode sheet at a first end of the coiled core and a cathode connector is connected with the cathode sheet at a second, opposite end of the coiled core. The coiled core has a length L core and a width W core and each connector has a width W connector . The length of the coiled core L core , width of the coiled core W core , and width of each connector W connector have the relationship 0 core -W connector )/L core
Abstract:
Disclosed are a plate assembly for a battery, a core and a lithium ion battery. The plate assembly comprises a plate, a conductive terminal and a membrane bag, the plate is encapsulated in the membrane bag, an encapsulation line is formed when the membrane bag is encapsulated, and the conductive terminal is disposed at one end of the plate and protruded out of the membrane bag, wherein the encapsulation line has at least two loops around the periphery of the plate. The core comprises the plate assembly of the present invention. The lithium ion battery comprises the core of the present invention. Since the membrane bag included in the plate assembly of the present invention is encapsulated by at least two loops of encapsulation line around the periphery of the plate, the membrane bag can be encapsulated tightly, which can prevent effectively the membrane bag from being cracked, and prevent the short circuit from being occurred due to the contact of the positive and negative plates, and thereby effectively improves the mechanical impact resistance of the battery.
Abstract:
Disclosed herein is a heat dissipating device for a battery pack which comprises a heat collecting plate having a heat collecting channel, a heat dissipating plate having a heat dissipating channel, and a pump, wherein, one port of the heat collecting channel is communicated with one port of the heat dissipating channel, the other port the heat collecting channel is communicated with the liquid outlet of the pump, and the liquid inlet of the pump is communicated with the other port of the heat dissipating channel. A battery pack using the heat dissipating device is also disclosed. During the operation of the heat dissipating device, the heat generated by the cells can be collected in the heat collecting plate and absorbed by the cooling liquid pumped into the heat collecting channel by the pump, the cooling liquid carrying the heat flows into the heat dissipating channel, the heat is dissipated outwardly through the heat dissipating plate, and then the cooling liquid is repeatedly pumped from the heat dissipating channel into the heat collecting channel by the pump, such that the heat generated by the cells can be dissipated rapidly and efficiently.
Abstract:
Disclosed herein is a lithium ion battery comprising an electrode core, an electrolyte solution, a metal shell and an end cover assembly, said metal shell comprising an outer wall, an inner wall and a chamber, said electrode core and electrolyte solution being located in the chamber of the metal shell, and said electrode core being connected to the end cover assembly with a electrode terminal of the electrode core, wherein the number of said electrode core is more than one, and the multiple electrode cores are located in the chamber of the metal shell. The lithium ion battery according to the present invention possesses excellent disperse heat dispersion, high mechanical safety, and good high rate discharge performance. In addition, the battery according to the present invention solves the problems of the "wound battery" of the prior art that the electrode plate is long and difficult to wind, and the "stacked battery" of the prior art that the electrode plate is difficult to prepare and pile up by dividing the electrode core of high capacity into multiple electrode core of low capacity placed abreast in the metal shell, whereby simplifying the preparation thereof.