Abstract:
An Electrophysiology catheter including control, localization, and/or fluid delivery features, and methods of using the same. One embodiment of the invention is directed to an electrophysiology catheter including a superelastic wire which is shaped to bias the orientation of the catheter and a cable, and a method of controlling the catheter using the cable. Another embodiment is directed to an electrophysiology catheter including an adhesive to bias the orientation of the catheter. A further embodiment is directed to an electrophysiology catheter including an adhesive and one or more cables, and a method of controlling the catheter using the one or more cables. Another embodiment is directed to a method using acts of injecting a fluid into the heart of a patient and adjusting the diameter of an arcuate curve of the catheter. Further embodiments are directed to a catheter having multiple position sensors on an arcuate curve of the catheterm or a position sensor associated with a movable electrode of the catheter.
Abstract:
A medical device is disclosed which includes a deformable electrode device (12). In one illustrative embodiment, the deformable electrode is in the form of a braided member, at least a portion of which is electrically conductive. The braided member is extended over an elongated inner member (14), such as a guide wire, catheter shaft, or the like. A proximal sheath (22) is slidably extended over the inner member and is connected to the braided, electrically conductive member. The proximal sheath may be advanced distally to deform the braided member so that it defines a distally facing, ablative ring (40), and is operative to form an annular lesion.
Abstract:
A steerable catheter includes control handle having a generally tubular housing with a longitudinal slot therein in which an axially or longitudinally movable tow-part slideblock resides, and a generally cylindrical, rotatably mounted thumbwheel surrounding a distal portion of the tubular housing, for controlling the axial translation of the slideblock. The pullwire passes into the distal end of the control handle and is only secured to the proximal part of the two-part slideblock so as to prevent the user from placing the pullwire under compression. A tip radius adjusting wire is attached to and extends distally from a slide actuator in the control handle into and through the main catheter shaft portion. The free distal end of the tip radius adjusting wire is selectably locatable at different positions. The radius of curvature of the tip portion, when deflected, depends upon how far distally into the deflectable tip portion the radius adjusting wire has been advanced by the user. The electrode catheter thus has a deflectable tip whose radius of curvature is adjustable over a relatively wide range.
Abstract:
A handle for use with a catheter, the handle including a housing, a cable, and a guide. The housing has a proximal end, a distal end, and a longitudinal axis that extends from the proximal end of the housing to the distal end of the housing. The cable is disposed in the housing and extends through the proximal end of the housing. A portion of the cable that is disposed in the housing is movable, under compression, in a first direction that is substantially aligned with the longitudinal axis of the housing. The guide is disposed in the housing and is adapted to prevent the portion of the cable from moving in a second direction that is transverse to the first direction when the portion of the cable is moved in the first direction. The handle is suitable for use with an electrophysiology catheter having an elongated shaft.
Abstract:
A steerable catheter includes control handle having a generally tubular housing with a longitudinal slot therein in which an axially or longitudinally movable tow-part slideblock resides, and a generally cylindrical, rotatably mounted thumbwheel surrounding a distal portion of the tubular housing, for controlling the axial translation of the slideblock. The pullwire passes into the distal end of the control handle and is only secured to the proximal part of the two-part slideblock so as to prevent the user from placing the pullwire under compression. A tip radius adjusting wire is attached to and extends distally from a slide actuator in the control handle into and through the main catheter shaft portion. The free distal end of the tip radius adjusting wire is selectably locatable at different positions. The radius of curvature of the tip portion, when deflected, depends upon how far distally into the deflectable tip portion the radius adjusting wire has been advanced by the user. The electrode catheter thus has a deflectable tip whose radius of curvature is adjustable over a relatively wide range.
Abstract:
Catheters for mapping and/or ablation are disclosed. In one embodiment, the catheter comprises a handle, a flexible shaft, a tip assembly, and a cable. The handle includes an actuator and is attached, at its distal end, to the proximal end of the flexible shaft. The flexible shaft has a longitudinal axis that extends along a length of the shaft. The proximal end of the tip assembly is attached to the distal end of the shaft and includes a fixed bend of approximatley ninety degrees relative to the longitudinal axis of the shaft. The distal end of the tip assembly includes an arcuate curve having a diameter. The arcuate curve is oriented in a plane that is approximatley perpendicular to the longitudinal axis of the shaft. The cable is attached to the actuator and the distal end of the tip assembly, and extends through the shaft. The cable is adapted to change the diameter of the arcuate curve in response to movement of the actuator.
Abstract:
A snap-fit assembly for the distal tip of a catheter is provided. The assembly includes a thermally insulative core and a thermally conductive ablation electrode arranged to interlock with one another by snapping the two together. The core has a proximal end which is shaped to readily fit within the distal tip of an ablation catheter and includes a head which temporarily compresses as it is inserted into the ablation electrode. A method of making the distal tip assembly is also provided.
Abstract:
The system and methods of the invention gauge the amount or quality of the contact between body tissue and one or more electrodes supported on a catheter. In further aspects, the invention concerns methods for controlling power delivery to particular electrodes on a catheter in response to tissue contact data derived from that electrode or other electrodes during the ablation procedure. The invention monitors and processes information concerning the number of pulses of pulsed radio-frequency energy that are delivered during an ablation procedure. The amount or quality of tissue contact is gauged by comparing the number of pulses delivered to a particular electrode during the interval to either the number of pulses delivered to at least one other electrode of the plural electrodes or data derived during the ablation procedure. The system and method can provide a display of the gauge of tissue contact among the various electrodes and also can automatically control distribution of pulsed RF energy in response to the gauge of tissue contact.
Abstract:
A method of treating cardiac arrhythmia, including guiding a distal end portion of a catheter, the distal end portion having a distal tip and accommodating at least one ablation electrode into a desired intracardiac region, for example, from the inferior vena cava into the right atrium of a human heart, and then from the right atrium into the right ventricle of the heart, pulling the catheter backwards, for example, towards the inferior vena cava, until the distal tip engages an edge of an intracardiac orifice, for example, the tricuspid annulus whereby the at least one electrode engages a target tissue, for example, the isthmus of tissue between the tricospid annulus and the inferior vena cava, deflecting the distal tip into a hook-shaped configuration, and activating the at least one electrode to produce a substantially continuous lesion on the target tissue. The method makes use of a catheter pre shaped at its distal end, steerable with pull wires in two different normal planes, having one electrode which slides along the distal tip of the catheter.
Abstract:
A steerable catheter control mechanism comprises a rotatable driver and a deflection device responsive to the driver to selectively secure a pair of control wires. The control wires are positioned such that rotation of the driver reduces the effective deflection device radius while loading a selected wire in tension, thereby maintaining a relatively constant torque acting on the driver and minimizing operator fatigue. The deflection device is also responsive to the driver to selectively place one of the control wires in tension while maintaining the other wire in a static state thereby minimizing control wire fatigue.