Abstract:
Each mobile router in a mobile ad hoc network is configured for identifying routes to nearby nodes that are within a prescribed distance, based on storage of explicit paths specified within routing headers of packets transmitted from a host node to a destination node. Each mobile router also can selectively compress the routing header, based on the storage of the explicit path, resulting in a loose source route type routing header in the packet output from the mobile router. In addition, a routing header of a received packet can be expanded based on the mobile router inserting the explicit path, enabling mobile hosts in the explicit path to forward the packet according to strict source routing. The storage and compression of explicit paths also can be applied to packets specifying reverse routing headers, minimizing the size of the reverse routing headers.
Abstract:
An autonomous wireless mobile network is established between mobile nodes configured as wireless autonomous robotic mobile access points. Each mobile node includes a mobility platform, an executable routing resource, and a standardized interface. The mobility platform is configured for supplying sensor data from attached physical sensors, and responding to motor commands from the standardized interface. The standardized interface is configured for converting each sensor datum into a corresponding sensor object, and converting received movement directives into the respective motor commands. The executable routing resource is configured for maintaining a database of world objects representing attributes within an infosphere established by the wireless mobile network based on the sensor objects and received network objects. The executable routing resource also is configured for generating the received movement directives and executing network decisions based on periodic evaluation of the world database, and exchanging the world objects with other mobile nodes.
Abstract:
Methods and apparatus for processing registration requests by a Home Agent supporting Mobile IP are disclosed. A registration request is received from each of a plurality of Mobile Nodes, the registration request specifying a care-of address, which may be allocated by the Foreign Agent. A binding is established between each of the plurality of Mobile Nodes and the associated care-of address, each of the plurality of Mobile Nodes being associated with one another. For instance, the plurality of Mobile Nodes may be statically or dynamically assigned the same Home Address. A tunnel is then created between the Home Agent and the care-of address for each of the plurality of Mobile Nodes, thereby enabling a server request to be distributed by the Home Agent to one of the plurality of Mobile Nodes or to a cluster of Mobile Nodes (e.g., associated with the care-of address) via the associated tunnel. For instance, a server request addressed to the Home Address may be forwarded directly to one of the Mobile Nodes assigned that Home Address. Alternatively, when an address such as the care-of address is associated with multiple Mobile Nodes, the Foreign Agent may perform a second level of dispatching such that the server request is dispatched to one of the Mobile Nodes in the cluster.
Abstract:
A gateway (12), configured for providing connectivity between a wide area network (14) and mobile routers (16) within a mobile ad hoc network (10), e.g. , MANET, is configured for registering the mobile routers with their respective home agents (18) using a prescribed mobile IP protocol, e.g. Mobile IPv6, (20). The gateway identifies the mobile routers using a prescribed proactive mobile ad hoc network routing protocol. The gateway locates, for each identified mobile router, its corresponding home agent via the wide area network according to the prescribed mobile IP protocol, and registers the corresponding identified mobile router with the home agent according to the prescribed mobile IP protcol. The gateway can then forward a packet received from a home agent to the corresponding mobile router. Hence, the gateway provides mobile routers within a mobile ad hoc network with access to the wide area network, without any necessity for the prescribed mobile IP protocol to be implemented within the mobile routers.
Abstract:
In one embodiment, an access point is configured with a plurality of resource units (RUs). Each RU is configured to use a frequency range that differs from frequency ranges used by the other RUs. The access point receives first information indicating, for each RU, a first signal quality that the station associates with the respective RU. The access point receives second information indicating, for each RU, a second signal quality that the station associates with the respective RU. The access point further determines, based on at least the first information and the second information, a pattern indicating a recurring signal quality that the station associates with each RU. The access point uses the pattern to allocate one of the RUs for communicating with the station.
Abstract:
A networking device with orthogonal switch bars may be provided. The networking device may comprise a first plurality of switch bars comprising leaf switches arranged parallel to one another. In addition, the networking device may comprise a second plurality of switch bars comprising top of pod switches arranged parallel to one another. Furthermore, the networking device may comprise a third plurality of switch bars comprising top of fabric switches arranged parallel to one another. The first plurality of switch bars, the second plurality of switch bars, and the third plurality of switch bars may be arranged mutually orthogonally. The first plurality of switch bars may be adjacent to and connected to the second plurality of switch bars and the second plurality of switch bars may be adjacent to and connected to the third plurality of switch bars.
Abstract:
A particular fat tree network node stores default routing information indicating that the particular fat tree network node can reach a plurality of parent fat tree network nodes of the particular fat tree network node. The particular fat tree network node obtains, from a first parent fat tree network node of the plurality of parent fat tree network nodes, a negative disaggregation advertisement indicating that the first parent fat tree network node cannot reach a specific destination. The particular fat tree network node determines whether the first parent fat tree network node is the only parent fat tree network node of the plurality of parent fat tree network nodes that cannot reach the specific destination. If so, the particular fat tree network node installs supplemental routing information indicating that every parent fat tree network node except the first parent fat tree network node can reach the specific destination.
Abstract:
In one embodiment, a parent node in a network observes time slot usage of a channel hopping schedule by one or more child nodes of the parent node to communicate with the parent node. The parent node also identifies high priority traffic from a particular child node. The parent node detects time contention for the high priority traffic based on an indication that at least a portion of the traffic has been rerouted by a particular child node to a different parent node. In response to detecting the time contention, the parent node adjusts a communication strategy used by the one or more child nodes.
Abstract:
In one embodiment, a method comprises a path computation device receiving device information from member network devices, each member network device belonging to a directed acyclic graph to a destination in a low power lossy network; and the path computation device classifying each member network device belonging to a directed acyclic graph as belonging to a dominating set, for generation of optimized routes distinct from any directed acyclic graph, for reaching any one of the member network devices of the dominating set.
Abstract:
One embodiment includes signaling, by a first network node to a transmission unit owner node, identifying one or more remaining wireless time slot-frequency pairings of a current transmission unit assigned to the first network node that will not be used by the first network node during the current transmission unit. The transmission unit owner node reassigns one or more of the remaining wireless time slot-frequency pairings to a second network node in the network to use during the current transmission unit. One embodiment includes communicating information between a first network node and a second network node using a particular time slot-frequency pairing, including a particular frame time from the second network node to the first network node, a particular acknowledgement time from the first network node to the second network node, and a particular acknowledgment of the acknowledgment time from the second to the first network node.