Abstract:
Certain features relate to operating a distributed antenna system or repeater system communicating frequency-division duplexing (“FDD”) signals in a time-division duplexing (“TDD”) mode. A TDD mode scheduler is configured for monitoring a downlink communications channel for the start of a downlink frame, sub-frame, or resource slot. Based on the start of a downlink frame, sub-frame, or resource slot, the TDD mode scheduler can identify a TDD transmission time-slot. The TDD mode scheduler can schedule high-powered downlink sub-frames during the TDD transmission time-slots where higher power output may be desirable. Based on the indication of the TDD transmission time-slot, a transmit/receive controller can increase the gain of the downlink communication and reduce the gain of the uplink communication.
Abstract:
Certain aspects involve power management subsystems for a distributed antenna system (“DAS”) or other telecommunication system. The power management subsystem can include a measurement module and an optimization module. The measurement module can monitor a utilization metric for a remote unit in the DAS or other telecommunication system. The power optimization module can determine whether the remote unit is underutilized based on the monitored utilization metric. The power optimization module can configure the remote unit for a low-power operation in response to determining that the remote unit is underutilized.
Abstract:
A remote unit of a distributed antenna system is disclosed that can communicate analog RF signals with both base stations and terminal devices in a coverage zone serviced by the remote unit. In some aspects, the remote unit can include a signal processing module and a transceiver. The transceiver can communicate RF signals between a master unit of the distributed antenna system and a terminal device. The transceiver can also receive analog downlink RF signals from a base station. The signal processing module can convert the analog downlink RF signals to digital downlink signals and provide the digital downlink signals to the master unit.
Abstract:
Embodiments are disclosed for extracting sub-bands of interest from signals in a frequency domain for transmission via a distributed antenna system. In one aspect, a transformed downlink signal is generated by performing a frequency transform on a downlink signal. The transformed downlink signal represents the downlink signal in a frequency domain. At least one sub-band of the transformed downlink signal is identified as including data to be transmitted via the distributed antenna system. The sub-band is extracted from the transformed downlink signal for transmission via the distributed antenna system.
Abstract:
Certain aspects involve a wideband remote unit. The wideband remote unit can include one or more antennas and an analog-to-digital converter (“ADC”). The antenna can receive wideband signals. The wideband signals can include an uplink RF signal and a leaked downlink RF signal. The uplink RF signal can have an uplink signal power at or near a noise level. The leaked downlink RF signal can have a downlink signal power greater than the uplink signal power. The ADC can convert the received wideband signals to digital RF signals representing the uplink signal and the downlink signal. The wideband remote unit can transmit the digital RF signals to a unit of a DAS that is in communication with a base station.
Abstract:
A telecommunications system is provided that includes a unit for communicating channelized digital baseband signals with remotely located units. The channelized digital baseband signals include call information for wireless communication. The unit includes a channelizer section and a transport section. The channelizer section can extract, per channel, the channelized digital baseband signals using channel filters and digital down-converters. The transport section can format the channelized digital baseband signals for transport together using a transport schedule unit for packetizing and packet scheduling the channelized digital baseband signals. A signal processing subsystem can control a gain of uplink digital baseband signals, independently, that are received from the remotely located units prior to summing the uplink digital baseband signals.