Abstract:
This disclosure generally relate to a method and system for mapping network information. The present technology relates techniques that enable full-scale, dynamic network mapping of a network system. By collecting network and computing data using built-in sensors, the present technology can provide network information for system monitoring and maintenance. According to some embodiments, the present technology enables generating and displaying of network connections and data processing statistics related to numerous nodes in a network. The present technology provides useful insights and actionable knowledge for network monitoring, security, and maintenance, via intelligently summarizing and effectively displaying the complex network communications and processes of a network.
Abstract:
Application dependency mapping can be automated in a network. The network can capture traffic data for flows passing through the network using a sensor network that provides multiple perspectives for the traffic. The network can analyze the traffic data to identify endpoints of the network. The network can also identify particular network configurations from the traffic data, such as a load balancing schema or a subnetting schema. The network can partition the endpoints based on the network configuration(s) and perform similarity measurements of endpoints in each partition to determine clusters of each partition. The clusters can make up nodes of an application dependency map, and relationships between and among the clusters can make up edges of the application dependency map.
Abstract:
Flow data can be augmented with features or attributes from other domains, such as attributes from a source host and/or destination host of a flow, a process initiating the flow, and/or a process owner or user. A network can be configured to capture network or packet header attributes of a first flow and determine additional attributes of the first flow using a sensor network. The sensor network can include sensors for networking devices (e.g., routers, switches, network appliances), physical servers, hypervisors or container engines, and virtual partitions (e.g., virtual machines or containers). The network can calculate a feature vector including the packet header attributes and additional attributes to represent the first flow. The network can compare the feature vector of the first flow to respective feature vectors of other flows to determine an applicable policy, and enforce that policy for subsequent flows.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
This disclosure generally relate to a method and system for mapping network information. The present technology relates techniques that enable full-scale, dynamic network mapping of a network system. By collecting network and computing data using built-in sensors, the present technology can provide network information for system monitoring and maintenance. According to some embodiments, the present technology enables generating and displaying of network connections and data processing statistics related to numerous nodes in a network. The present technology provides useful insights and actionable knowledge for network monitoring, security, and maintenance, via intelligently summarizing and effectively displaying the complex network communications and processes of a network.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
Systems, methods, and computer-readable media are provided for determining a packet's round trip time (RTT) in a network. A system can receive information of a packet sent by a component of the network and further determine an expected acknowledgement (ACK) sequence number associated with the packet based upon received information of the packet. The system can receive information of a subsequent packet received by the component and determine an ACK sequence number and a receiving time of the subsequent packet. In response to determining that the ACK sequence number of the subsequent TCP packet matches the expected ACK sequence number, the system can determine a round trip time (RTT) of the packet based upon the received information of the packet and the received information of the subsequent packet.
Abstract:
Systems, methods, and computer-readable media are provided for determining whether a node in a network is a server or a client. In some examples, a system can collect, from one or more sensors that monitor at least part of data traffic being transmitted via a pair of nodes in a network, information of the data traffic. The system can analyze attributes of the data traffic such as timing, port magnitude, degree of communication, historical data, etc. Based on analysis results and a predetermined rule associated with the attributes, the system can determine which node of the pair of nodes is a client and which node is a server.
Abstract:
An example method can include choosing a pattern or patterns of network traffic. This pattern can be representative of a certain type of traffic such as an attack. The pattern can be associated with various components of a network and can describe expected behavior of these various components. A system performing this method can then choose a nodes or nodes to generate traffic according to the pattern and send an instruction accordingly. After this synthetic traffic is generated, the system can compare the behavior of the components with the expected behavior. An alert can then be created to notify an administrator or otherwise remedy any problems.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.