Abstract:
A method for controlling a vapour compression system (1) is disclosed, the vapour compression system (1) comprising at least one expansion device (8) and at least one evaporator (9). For each expansion device (8), an opening degree of the expansion device (8) is obtained, and a representative opening degree, ODrep, is identified based on the obtained opening degree(s) of the expansion device(s) (8). The representative opening degree could be a maximum opening degree, ODmax, being the largest among the obtained opening degrees. The representative opening degree, ODrep, is compared to a predefined target opening degree, ODtarget, and a minimum setpoint value, SPrec, for a pressure prevailing inside a receiver (7), is calculated or adjusted, based on the comparison. The vapour compression system (1) is controlled to obtain a pressure inside the receiver (7) which is equal to or higher than the calculated or adjusted minimum setpoint value, SPrec.
Abstract:
A vapour compression system (1) comprising at least two evaporator groups (5a, 5b, 5c), each evaporator group (5a, 5b, 5c) comprising an ejector unit (7a, 7b, 7c), at least one evaporator (9a, 9b, 9c) and a flow control device (8a, 8b, 8c) controlling a flow of refrigerant to the at least one evaporator (9a, 9b, 9c). For each evaporator group (5a, 5b, 5c) the outlet of the evaporator (9a, 9b, 9c) is connected to a secondary inlet (12a, 12b, 12c) of the corresponding ejector unit (7a, 7b, 7c). The vapour compression system (1) can be controlled in an energy efficient and stable manner. A method for controlling the vapour compression system (1) is also disclosed.
Abstract:
A level sensor is configured to provide a receiver level indicating an amount of the refrigerant present in the receiver and a level model provides a heat rejecting heat exchanger estimate indicating an amount of the refrigerant present in the heat rejecting heat exchanger based on a temperature of the refrigerant. From the sensor and the model, a loss of refrigerant from the RVCS system is estimated.
Abstract:
A vapour compression system (1) comprising an ejector (9), a primary evaporator (17) and a secondary evaporator is disclosed. The vapour compression system (1) further comprises a flow control device (19) arranged with an inlet communicating with a liquid outlet (25) of the receiver (11), and an outlet of the flow control device (19) supplying refrigerant to the secondary evaporator, the secondary evaporator communicating with a secondary inlet (27) of the ejector (9). Thereby the receiver (11) pressure can be optimized irrespective of the refrigerant in the secondary evaporator and the primary (17) and secondary evaporators can provide cooling power simultaneously in an energy efficient manner.
Abstract:
A method for operating a compressor unit (2) comprising one or more compressors (8, 9, 10) is disclosed, the compressor unit (2) being arranged in a vapour compression system (1). Two or more options for distributing the available compressor capacity of the compressor unit (2) between being connected to a high pressure suction line (11) and to a medium pressure suction line (13) are defined. For each option, an expected impact on one or more operating parameters of the vapour compression system (1), resulting from distributing the available compressor capacity according to the option, is predicted. An option is selected, based on the predicted expected impact for the options, and based on current operating demands of the vapour compression system (1), and the available compressor capacity is distributed according to the selected option, e.g. by means of settings of one or more valve arrangements (14, 15).
Abstract:
A method for controlling a vapour compression system (1) is disclosed. The vapour compression system (1) comprises an ejector (6) and a liquid separating device (10) arranged in a suction line. At least one evaporator (9) is allowed to be operated in a flooded state. A flow rate of refrigerant from the liquid separating device (10) to the secondary inlet (15) of the ejector (6) is detected, and it is determined whether or not the flow rate is sufficient to remove liquid refrigerant produced by the evaporator(s) (9) being allowed to be operated in a flooded state from the liquid separating device (10). In the case that it is determined that the flow rate of refrigerant from the liquid separating device (10) to the secondary inlet (15) of the ejector (6) is insufficient to remove liquid refrigerant produced by the evaporator(s) (9), the flow rate of refrigerant from the liquid separating device (10) to the secondary inlet (15) of the ejector (6) is increased, and/or a flow rate of liquid refrigerant from the evaporator(s) (9) to the liquid separating device (10) is decreased.
Abstract:
A method for operating a vapour compression system (1) comprising a heat recovery heat exchanger (4) is disclosed. The heat recovery system requests a required level of recovered heat to be provided by the heat recovery heat exchanger (4) to the heat recovery system, generates a signal indicating the required level of recovered heat, and supplies the generated signal to a control unit of the vapour compression system (1). A setpoint value for at least one control parameter of the vapour compression system (1) is calculated, based on the generated signal, and the vapour compression system (1) is operated in accordance with the calculated setpoint value(s).
Abstract:
A method for controlling a vapour compression system (1), the vapour compression system (1) comprising a compressor unit (2) comprising one or more compressors (10, 11, 13), is disclosed. At least one of the compressors (11, 13) of the compressor unit (2) is connectable to a gaseous outlet (9) of a receiver (5), and at least one of the compressors (10, 13) of the compressor unit (2) is connectable to an outlet of an evaporator (7). A parameter of the vapour compression system (1) is measured, an enthalpy of refrigerant leaving the heat rejecting heat exchanger (3) being derivable from the measured parameter. A setpoint value for a pressure inside the receiver (5) is calculated, based on the measured parameter, and the compressor unit (2) is operated in accordance with the calculated setpoint value, and in order to obtain a pressure inside the receiver (5) which is equal to the calculated setpoint value. The vapour compression system (1) is operated in an energy efficient manner over a wide range of ambient temperatures.